EconPapers    
Economics at your fingertips  
 

Analysis and Computational Dissection of Molecular Signature Multiplicity

Alexander Statnikov and Constantin F Aliferis

PLOS Computational Biology, 2010, vol. 6, issue 5, 1-9

Abstract: Molecular signatures are computational or mathematical models created to diagnose disease and other phenotypes and to predict clinical outcomes and response to treatment. It is widely recognized that molecular signatures constitute one of the most important translational and basic science developments enabled by recent high-throughput molecular assays. A perplexing phenomenon that characterizes high-throughput data analysis is the ubiquitous multiplicity of molecular signatures. Multiplicity is a special form of data analysis instability in which different analysis methods used on the same data, or different samples from the same population lead to different but apparently maximally predictive signatures. This phenomenon has far-reaching implications for biological discovery and development of next generation patient diagnostics and personalized treatments. Currently the causes and interpretation of signature multiplicity are unknown, and several, often contradictory, conjectures have been made to explain it. We present a formal characterization of signature multiplicity and a new efficient algorithm that offers theoretical guarantees for extracting the set of maximally predictive and non-redundant signatures independent of distribution. The new algorithm identifies exactly the set of optimal signatures in controlled experiments and yields signatures with significantly better predictivity and reproducibility than previous algorithms in human microarray gene expression datasets. Our results shed light on the causes of signature multiplicity, provide computational tools for studying it empirically and introduce a framework for in silico bioequivalence of this important new class of diagnostic and personalized medicine modalities.Author Summary: One of the promises of personalized medicine is to use molecular information to better diagnose, manage, and treat disease. This promise is enabled through the use of molecular signatures that are computational models to predict a phenotype of interest from high-throughput assay data. Many molecular signatures have been developed to date, and some passed regulatory approval and are currently used in clinical practice. However, researchers have noted that it is possible to develop many different and equivalently accurate molecular signatures for the same phenotype and population. This phenomenon of signature multiplicity has far-reaching implications for biological discovery and development of next generation patient diagnostics and personalized treatments. Currently the causes and interpretation of signature multiplicity are unknown, and several, often contradictory, conjectures have been made to explain it. Our results shed light on the causes of signature multiplicity and provide a method for extracting all equivalently accurate signatures from high-throughput data.

Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000790 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00790&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000790

DOI: 10.1371/journal.pcbi.1000790

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1000790