Computational Analysis of Whole-Genome Differential Allelic Expression Data in Human
James R Wagner,
Bing Ge,
Dmitry Pokholok,
Kevin L Gunderson,
Tomi Pastinen and
Mathieu Blanchette
PLOS Computational Biology, 2010, vol. 6, issue 7, 1-12
Abstract:
Allelic imbalance (AI) is a phenomenon where the two alleles of a given gene are expressed at different levels in a given cell, either because of epigenetic inactivation of one of the two alleles, or because of genetic variation in regulatory regions. Recently, Bing et al. have described the use of genotyping arrays to assay AI at a high resolution (∼750,000 SNPs across the autosomes). In this paper, we investigate computational approaches to analyze this data and identify genomic regions with AI in an unbiased and robust statistical manner. We propose two families of approaches: (i) a statistical approach based on z-score computations, and (ii) a family of machine learning approaches based on Hidden Markov Models. Each method is evaluated using previously published experimental data sets as well as with permutation testing. When applied to whole genome data from 53 HapMap samples, our approaches reveal that allelic imbalance is widespread (most expressed genes show evidence of AI in at least one of our 53 samples) and that most AI regions in a given individual are also found in at least a few other individuals. While many AI regions identified in the genome correspond to known protein-coding transcripts, others overlap with recently discovered long non-coding RNAs. We also observe that genomic regions with AI not only include complete transcripts with consistent differential expression levels, but also more complex patterns of allelic expression such as alternative promoters and alternative 3′ end. The approaches developed not only shed light on the incidence and mechanisms of allelic expression, but will also help towards mapping the genetic causes of allelic expression and identify cases where this variation may be linked to diseases.Author Summary: Measures of gene expression, and the search for regulatory regions in the genome responsible for differences in levels of gene expression, is one of the key paths of research used to identify disease causing genes, as well as explain differences between healthy individuals. Typically, experiments have measured and compared gene expression in multiple individuals, and used this information to attempt to map regulatory regions responsible. Differences in environment between individuals can, however, cause differences in gene expression unrelated to the underlying regulatory sequence. New genotyping technologies enable the measurement of expression of both copies of a particular gene, at loci that are heterozygous within a particular individual. This will therefore act as an internal control, as environmental factors will continue to affect the expression of both copies of a gene at presumably equal levels, and differences in expression are more likely to be explicable by differences in regulatory regions specific to the two copies of the gene itself. Differences between regulatory regions are expected to lead to differences in expression of the two copies (or the two alleles) of a particular gene, also known as allelic imbalance. We describe a set of signal processing methods for the reliable detection of allelic expression within the genome.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000849 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00849&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000849
DOI: 10.1371/journal.pcbi.1000849
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().