EconPapers    
Economics at your fingertips  
 

A Model for a Correlated Random Walk Based on the Ordered Extension of Pseudopodia

Peter J M Van Haastert

PLOS Computational Biology, 2010, vol. 6, issue 8, 1-11

Abstract: Cell migration in the absence of external cues is well described by a correlated random walk. Most single cells move by extending protrusions called pseudopodia. To deduce how cells walk, we have analyzed the formation of pseudopodia by Dictyostelium cells. We have observed that the formation of pseudopodia is highly ordered with two types of pseudopodia: First, de novo formation of pseudopodia at random positions on the cell body, and therefore in random directions. Second, pseudopod splitting near the tip of the current pseudopod in alternating right/left directions, leading to a persistent zig-zag trajectory. Here we analyzed the probability frequency distributions of the angles between pseudopodia and used this information to design a stochastic model for cell movement. Monte Carlo simulations show that the critical elements are the ratio of persistent splitting pseudopodia relative to random de novo pseudopodia, the Left/Right alternation, the angle between pseudopodia and the variance of this angle. Experiments confirm predictions of the model, showing reduced persistence in mutants that are defective in pseudopod splitting and in mutants with an irregular cell surface.Author Summary: Even in the absence of external information, many organisms do not move in purely random directions. Usually, the current direction is correlated with the direction of prior movement. This persistent random walk is the typical way that simple cells or complex organisms move. Cells with poor persistence exhibit Brownian motion with little displacement. In contrast, cells with strong persistence explore much larger areas. We have explored the principle of the persistent random walk by analyzing how Dictyostelium cells extend protrusions called pseudopodia. These cells can extend a new pseudopod in a random direction. However, usually cells use the current pseudopod for alternating right/left splittings, by which they move in a persistent zig-zag trajectory. A stochastic model was designed for the persistent random walk, which is based on the observed angular frequencies of pseudopod extensions. Critical elements for persistent movement are the ratio of de novo and splitting pseudopodia, and, unexpectedly, the shape of the cell. A relatively round cell moves with much more persistence than a cell with an irregular shape. These predictions of the model were confirmed by experiments that record the movement of mutant cells that are specifically defective in pseudopod splitting or have a very irregular shape.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000874 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00874&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000874

DOI: 10.1371/journal.pcbi.1000874

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1000874