EconPapers    
Economics at your fingertips  
 

Gene Expression Network Reconstruction by Convex Feature Selection when Incorporating Genetic Perturbations

Benjamin A Logsdon and Jason Mezey

PLOS Computational Biology, 2010, vol. 6, issue 12, 1-13

Abstract: Cellular gene expression measurements contain regulatory information that can be used to discover novel network relationships. Here, we present a new algorithm for network reconstruction powered by the adaptive lasso, a theoretically and empirically well-behaved method for selecting the regulatory features of a network. Any algorithms designed for network discovery that make use of directed probabilistic graphs require perturbations, produced by either experiments or naturally occurring genetic variation, to successfully infer unique regulatory relationships from gene expression data. Our approach makes use of appropriately selected cis-expression Quantitative Trait Loci (cis-eQTL), which provide a sufficient set of independent perturbations for maximum network resolution. We compare the performance of our network reconstruction algorithm to four other approaches: the PC-algorithm, QTLnet, the QDG algorithm, and the NEO algorithm, all of which have been used to reconstruct directed networks among phenotypes leveraging QTL. We show that the adaptive lasso can outperform these algorithms for networks of ten genes and ten cis-eQTL, and is competitive with the QDG algorithm for networks with thirty genes and thirty cis-eQTL, with rich topologies and hundreds of samples. Using this novel approach, we identify unique sets of directed relationships in Saccharomyces cerevisiae when analyzing genome-wide gene expression data for an intercross between a wild strain and a lab strain. We recover novel putative network relationships between a tyrosine biosynthesis gene (TYR1), and genes involved in endocytosis (RCY1), the spindle checkpoint (BUB2), sulfonate catabolism (JLP1), and cell-cell communication (PRM7). Our algorithm provides a synthesis of feature selection methods and graphical model theory that has the potential to reveal new directed regulatory relationships from the analysis of population level genetic and gene expression data.Author Summary: Determining a unique set of regulatory relationships underlying the observed expression of genes is a challenging problem, not only because of the many possible regulatory relationships, but also because highly distinct regulatory relationships can fit data equally well. In addition, most expression data-sets have relatively small sample sizes compared to the number of genes measured, causing high sampling variability that leads to a significant reduction in power and inflation of the false positive rate for any network reconstruction method. We propose a novel algorithm for network reconstruction that uses a theoretically and empirically well-behaved method for selecting regulatory features, while leveraging genetic perturbations arising from cis-expression Quantitative Trait Loci (cis-eQTL) to maximally resolve a network. Our algorithm has good performance for realistic samples sizes and can be used to identify a unique set of acyclic or cyclic regulatory relationships that explain observed gene expression.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001014 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 01014&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1001014

DOI: 10.1371/journal.pcbi.1001014

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1001014