EconPapers    
Economics at your fingertips  
 

Little Italy: An Agent-Based Approach to the Estimation of Contact Patterns- Fitting Predicted Matrices to Serological Data

Fabrizio Iozzi, Francesco Trusiano, Matteo Chinazzi, Francesco Billari, Emilio Zagheni, Stefano Merler, Marco Ajelli, Emanuele Del Fava and Piero Manfredi

PLOS Computational Biology, 2010, vol. 6, issue 12, 1-10

Abstract: Knowledge of social contact patterns still represents the most critical step for understanding the spread of directly transmitted infections. Data on social contact patterns are, however, expensive to obtain. A major issue is then whether the simulation of synthetic societies might be helpful to reliably reconstruct such data. In this paper, we compute a variety of synthetic age-specific contact matrices through simulation of a simple individual-based model (IBM). The model is informed by Italian Time Use data and routine socio-demographic data (e.g., school and workplace attendance, household structure, etc.). The model is named “Little Italy” because each artificial agent is a clone of a real person. In other words, each agent's daily diary is the one observed in a corresponding real individual sampled in the Italian Time Use Survey. We also generated contact matrices from the socio-demographic model underlying the Italian IBM for pandemic prediction. These synthetic matrices are then validated against recently collected Italian serological data for Varicella (VZV) and ParvoVirus (B19). Their performance in fitting sero-profiles are compared with other matrices available for Italy, such as the Polymod matrix. Synthetic matrices show the same qualitative features of the ones estimated from sample surveys: for example, strong assortativeness and the presence of super- and sub-diagonal stripes related to contacts between parents and children. Once validated against serological data, Little Italy matrices fit worse than the Polymod one for VZV, but better than concurrent matrices for B19. This is the first occasion where synthetic contact matrices are systematically compared with real ones, and validated against epidemiological data. The results suggest that simple, carefully designed, synthetic matrices can provide a fruitful complementary approach to questionnaire-based matrices. The paper also supports the idea that, depending on the transmissibility level of the infection, either the number of different contacts, or repeated exposure, may be the key factor for transmission.Author Summary: Data on social contact patterns are fundamental to design adequate control policies for directly transmissible infectious diseases, ranging from a flu pandemic to tuberculosis, to recurrent epidemics of childhood diseases. Most countries in the world do not dispose of such data. We propose an approach to generate synthetic contact data by simulating an artificial society that integrates routinely available socio-demographic data, such as data on household composition or on school participation, with Time Use data, which are increasingly available. We then validate the ensuing simulated contact data against real epidemiological data for varicella and parvo-virus. The results suggest that the approach is potentially a very fruitful one, and provide some insights on the biology of transmission of close-contact infectious diseases.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001021 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 01021&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1001021

DOI: 10.1371/journal.pcbi.1001021

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1001021