A Novel Approach to Pharmacodynamic Assessment of Antimicrobial Agents: New Insights to Dosing Regimen Design
Vincent H Tam and
Michael Nikolaou
PLOS Computational Biology, 2011, vol. 7, issue 1, 1-8
Abstract:
Pharmacodynamic modeling has been increasingly used as a decision support tool to guide dosing regimen selection, both in the drug development and clinical settings. Killing by antimicrobial agents has been traditionally classified categorically as concentration-dependent (which would favor less fractionating regimens) or time-dependent (for which more frequent dosing is preferred). While intuitive and useful to explain empiric data, a more informative approach is necessary to provide a robust assessment of pharmacodynamic profiles in situations other than the extremes of the spectrum (e.g., agents which exhibit partial concentration-dependent killing). A quantitative approach to describe the interaction of an antimicrobial agent and a pathogen is proposed to fill this unmet need. A hypothetic antimicrobial agent with linear pharmacokinetics is used for illustrative purposes. A non-linear functional form (sigmoid Emax) of killing consisted of 3 parameters is used. Using different parameter values in conjunction with the relative growth rate of the pathogen and antimicrobial agent concentration ranges, various conventional pharmacodynamic surrogate indices (e.g., AUC/MIC, Cmax/MIC, %T>MIC) could be satisfactorily linked to outcomes. In addition, the dosing intensity represented by the average kill rate of a dosing regimen can be derived, which could be used for quantitative comparison. The relevance of our approach is further supported by experimental data from our previous investigations using a variety of gram-negative bacteria and antimicrobial agents (moxifloxacin, levofloxacin, gentamicin, amikacin and meropenem). The pharmacodynamic profiles of a wide range of antimicrobial agents can be assessed by a more flexible computational tool to support dosing selection.Author Summary: Antimicrobial agents have been the mainstay of treatment for a variety of infectious diseases such as urinary tract infections and pneumonia. Due to the increasing incidence of antimicrobial resistance, there is an ever demanding need to develop new antimicrobial agents rapidly. These agents can be given in different ways, both in terms of the daily dose and dosing frequency. The traditional approach to the design of antimicrobial agent dosing regimen relies primarily on a categorical classification, which often could be restrictive. We proposed a new computational method to provide quantitative insights to the interaction between an antimicrobial agent and a pathogen (pharmacodynamics). With a more robust understanding of this relationship, the effectiveness of different antimicrobial dosing regimens can be compared efficiently, which would facilitate new agent development by rationally guiding dosing regimen selection. The relevance of our approach was supported by a series of experimental validation using different antimicrobial agents and bacteria. A higher probability of resistance suppression could be achieved with optimal dosing regimens, which may prolong the clinical utility of new agents under development.
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001043 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 01043&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1001043
DOI: 10.1371/journal.pcbi.1001043
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().