EconPapers    
Economics at your fingertips  
 

Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings

Elise Payzan-LeNestour and Peter Bossaerts

PLOS Computational Biology, 2011, vol. 7, issue 1, 1-14

Abstract: Recently, evidence has emerged that humans approach learning using Bayesian updating rather than (model-free) reinforcement algorithms in a six-arm restless bandit problem. Here, we investigate what this implies for human appreciation of uncertainty. In our task, a Bayesian learner distinguishes three equally salient levels of uncertainty. First, the Bayesian perceives irreducible uncertainty or risk: even knowing the payoff probabilities of a given arm, the outcome remains uncertain. Second, there is (parameter) estimation uncertainty or ambiguity: payoff probabilities are unknown and need to be estimated. Third, the outcome probabilities of the arms change: the sudden jumps are referred to as unexpected uncertainty. We document how the three levels of uncertainty evolved during the course of our experiment and how it affected the learning rate. We then zoom in on estimation uncertainty, which has been suggested to be a driving force in exploration, in spite of evidence of widespread aversion to ambiguity. Our data corroborate the latter. We discuss neural evidence that foreshadowed the ability of humans to distinguish between the three levels of uncertainty. Finally, we investigate the boundaries of human capacity to implement Bayesian learning. We repeat the experiment with different instructions, reflecting varying levels of structural uncertainty. Under this fourth notion of uncertainty, choices were no better explained by Bayesian updating than by (model-free) reinforcement learning. Exit questionnaires revealed that participants remained unaware of the presence of unexpected uncertainty and failed to acquire the right model with which to implement Bayesian updating.Author Summary: The ability of humans to learn changing reward contingencies implies that they perceive, at a minimum, three levels of uncertainty: risk, which reflects imperfect foresight even after everything is learned; (parameter) estimation uncertainty, i.e., uncertainty about outcome probabilities; and unexpected uncertainty, or sudden changes in the probabilities. We describe how these levels of uncertainty evolve in a natural sampling task in which human choices reliably reflect optimal (Bayesian) learning, and how their evolution changes the learning rate. We then zoom in on estimation uncertainty. The ability to sense estimation uncertainty (also known as ambiguity) is a virtue because, besides allowing one to learn optimally, it may guide more effective exploration; but aversion to estimation uncertainty may be maladaptive. Here, we show that participant choices reflected aversion to estimation uncertainty. We discuss how past imaging studies foreshadowed the ability of humans to distinguish the different notions of uncertainty. Also, we document that the ability of participants to do such distinction relies on sufficient revelation of the payoff-generating model. When we induced structural uncertainty, participants did not gain awareness of the jumps in our task, and fell back to model-free reinforcement learning.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001048 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 01048&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1001048

DOI: 10.1371/journal.pcbi.1001048

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1001048