From Spiking Neuron Models to Linear-Nonlinear Models
Srdjan Ostojic and
Nicolas Brunel
PLOS Computational Biology, 2011, vol. 7, issue 1, 1-16
Abstract:
Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.Author Summary: Deciphering the encoding of information in the brain implies understanding how individual neurons emit action potentials (APs) in response to time-varying stimuli. This task is made difficult by two facts: (i) although the biophysics of AP generation are well understood, the dynamics of the membrane potential in response to a time-varying input are highly complex; (ii) the firing of APs in response to a given stimulus is inherently stochastic as only a fraction of the inputs to a neuron are directly controlled by the stimulus, the remaining being due to the fluctuating activity of the surrounding network. As a result, the input-output transform of individual neurons is often represented with the help of simplified phenomenological models that do not take into account the biophysical details. In this study, we directly relate a class of such phenomenological models, the so called linear-nonlinear models, with more biophysically detailed spiking neuron models. We provide a quantitative mapping between the two classes of models, and show that the linear-nonlinear models provide a good approximation of the input-output transform of spiking neurons, as long as the fluctuating inputs from the surrounding network are not exceedingly weak.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001056 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 01056&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1001056
DOI: 10.1371/journal.pcbi.1001056
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol (ploscompbiol@plos.org).