EconPapers    
Economics at your fingertips  
 

The Binding of Learning to Action in Motor Adaptation

Luis Nicolas Gonzalez Castro, Craig Bryant Monsen and Maurice A Smith

PLOS Computational Biology, 2011, vol. 7, issue 6, 1-14

Abstract: In motor tasks, errors between planned and actual movements generally result in adaptive changes which reduce the occurrence of similar errors in the future. It has commonly been assumed that the motor adaptation arising from an error occurring on a particular movement is specifically associated with the motion that was planned. Here we show that this is not the case. Instead, we demonstrate the binding of the adaptation arising from an error on a particular trial to the motion experienced on that same trial. The formation of this association means that future movements planned to resemble the motion experienced on a given trial benefit maximally from the adaptation arising from it. This reflects the idea that actual rather than planned motions are assigned ‘credit’ for motor errors because, in a computational sense, the maximal adaptive response would be associated with the condition credited with the error. We studied this process by examining the patterns of generalization associated with motor adaptation to novel dynamic environments during reaching arm movements in humans. We found that these patterns consistently matched those predicted by adaptation associated with the actual rather than the planned motion, with maximal generalization observed where actual motions were clustered. We followed up these findings by showing that a novel training procedure designed to leverage this newfound understanding of the binding of learning to action, can improve adaptation rates by greater than 50%. Our results provide a mechanistic framework for understanding the effects of partial assistance and error augmentation during neurologic rehabilitation, and they suggest ways to optimize their use. Author Summary: Einstein once said: “Insanity is doing the same thing over and over again and expecting different results”. However, task repetition is generally the default procedure for training a motor skill. This can work because motor learning ensures that repetition of the same motor task will lead to actions that are different, as errors are reduced and motor skill improves. However, here we show that task repetition, although not “insane”, is inefficient. The machine learning algorithms used to control motion in robotics adapt the movement that was actually made rather than the planned movement in order to assure stable learning. In contrast, it had been widely assumed that neural motor systems adapt based on the planned rather than the actual movement. If this were the case, task repetition would be an efficient training procedure. Here we studied the mechanisms for motor adaptation in humans and found that, like in robotic learning, the adaptation that we experience is associated with the actual movement. This finding led to the design of an improved training procedure that avoids task repetition. Instead, this procedure continually adjusts the movement goal in order to drive participants to experience the correct movement, even if initially by accident, leading to an over 50% improvement in the motor adaptation rate.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002052 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02052&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002052

DOI: 10.1371/journal.pcbi.1002052

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1002052