Network-Based Prediction and Analysis of HIV Dependency Factors
T M Murali,
Matthew D Dyer,
David Badger,
Brett M Tyler and
Michael G Katze
PLOS Computational Biology, 2011, vol. 7, issue 9, 1-15
Abstract:
HIV Dependency Factors (HDFs) are a class of human proteins that are essential for HIV replication, but are not lethal to the host cell when silenced. Three previous genome-wide RNAi experiments identified HDF sets with little overlap. We combine data from these three studies with a human protein interaction network to predict new HDFs, using an intuitive algorithm called SinkSource and four other algorithms published in the literature. Our algorithm achieves high precision and recall upon cross validation, as do the other methods. A number of HDFs that we predict are known to interact with HIV proteins. They belong to multiple protein complexes and biological processes that are known to be manipulated by HIV. We also demonstrate that many predicted HDF genes show significantly different programs of expression in early response to SIV infection in two non-human primate species that differ in AIDS progression. Our results suggest that many HDFs are yet to be discovered and that they have potential value as prognostic markers to determine pathological outcome and the likelihood of AIDS development. More generally, if multiple genome-wide gene-level studies have been performed at independent labs to study the same biological system or phenomenon, our methodology is applicable to interpret these studies simultaneously in the context of molecular interaction networks and to ask if they reinforce or contradict each other. Author Summary: Medicines to cure infectious diseases usually target proteins in the pathogens. Since pathogens have short life cycles, the targeted proteins can rapidly evolve and make the medicines ineffective, especially in viruses such as HIV. However, since viruses have very small genomes, they must exploit the cellular machinery of the host to propagate. Therefore, disrupting the activity of selected host proteins may impede viruses. Three recent experiments have discovered hundreds of such proteins in human cells that HIV depends upon. Surprisingly, these three sets have very little overlap. In this work, we demonstrate that this discrepancy can be explained by considering physical interactions between the human proteins in these studies. Moreover, we exploit these interactions to predict new dependency factors for HIV. Our predictions show very significant overlaps with human proteins that are known to interact with HIV proteins and with human cellular processes that are known to be subverted by the virus. Most importantly, we show that proteins predicted by us may play a prominent role in affecting HIV-related disease progression in lymph nodes. Therefore, our predictions constitute a powerful resource for experimentalists who desire to discover new human proteins that can control the spread of HIV.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002164 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02164&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002164
DOI: 10.1371/journal.pcbi.1002164
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().