EconPapers    
Economics at your fingertips  
 

Estimating the Relevance of World Disturbances to Explain Savings, Interference and Long-Term Motor Adaptation Effects

Max Berniker and Konrad P Kording

PLOS Computational Biology, 2011, vol. 7, issue 10, 1-12

Abstract: Recent studies suggest that motor adaptation is the result of multiple, perhaps linear processes each with distinct time scales. While these models are consistent with some motor phenomena, they can neither explain the relatively fast re-adaptation after a long washout period, nor savings on a subsequent day. Here we examined if these effects can be explained if we assume that the CNS stores and retrieves movement parameters based on their possible relevance. We formalize this idea with a model that infers not only the sources of potential motor errors, but also their relevance to the current motor circumstances. In our model adaptation is the process of re-estimating parameters that represent the body and the world. The likelihood of a world parameter being relevant is then based on the mismatch between an observed movement and that predicted when not compensating for the estimated world disturbance. As such, adapting to large motor errors in a laboratory setting should alert subjects that disturbances are being imposed on them, even after motor performance has returned to baseline. Estimates of this external disturbance should be relevant both now and in future laboratory settings. Estimated properties of our bodies on the other hand should always be relevant. Our model demonstrates savings, interference, spontaneous rebound and differences between adaptation to sudden and gradual disturbances. We suggest that many issues concerning savings and interference can be understood when adaptation is conditioned on the relevance of parameters. Author Summary: Trying to explain how humans adapt to new motor behaviors and retain them over time is a central focus in motor control. Many aspects of adaptation, including savings and interference, have proven difficult to explain in a coherent manner. Linear dynamical models have been successful at describing the observed increase in performance while subjects familiarize themselves with an experimental perturbation. Many aspects of these experiments however, remain unexplained. In particular, while subjects display the ability to remember new motor behaviors for long periods of time, these linear models cannot. In this work we extend our previous body-world model of motor adaptation by estimating the relevance of inferred world disturbances. When these parameters are estimated to be relevant, they are used (and motor behaviors are adapted), and when they are estimated to not be relevant they are stored (and motor behaviors are remembered without being lost). Our model offers explanations for many observations on motor adaptation, savings and interference.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002210 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02210&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002210

DOI: 10.1371/journal.pcbi.1002210

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1002210