EconPapers    
Economics at your fingertips  
 

Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models

Jeffrey D Fitzgerald, Ryan J Rowekamp, Lawrence C Sincich and Tatyana O Sharpee

PLOS Computational Biology, 2011, vol. 7, issue 10, 1-9

Abstract: Conventional methods used to characterize multidimensional neural feature selectivity, such as spike-triggered covariance (STC) or maximally informative dimensions (MID), are limited to Gaussian stimuli or are only able to identify a small number of features due to the curse of dimensionality. To overcome these issues, we propose two new dimensionality reduction methods that use minimum and maximum information models. These methods are information theoretic extensions of STC that can be used with non-Gaussian stimulus distributions to find relevant linear subspaces of arbitrary dimensionality. We compare these new methods to the conventional methods in two ways: with biologically-inspired simulated neurons responding to natural images and with recordings from macaque retinal and thalamic cells responding to naturalistic time-varying stimuli. With non-Gaussian stimuli, the minimum and maximum information methods significantly outperform STC in all cases, whereas MID performs best in the regime of low dimensional feature spaces. Author Summary: Neurons are capable of simultaneously encoding information about multiple features of sensory stimuli in their spikes. The dimensionality reduction methods that currently exist to extract those relevant features are either biased for non-Gaussian stimuli or fall victim to the curse of dimensionality. In this paper we introduce two information theoretic extensions of the spike-triggered covariance method. These new methods use the concepts of minimum and maximum mutual information to identify the stimulus features encoded in the spikes of a neuron. Using simulated and experimental neural data, these methods are shown to perform well both in situations where conventional approaches are appropriate and where they fail. These new techniques should improve the characterization of neural feature selectivity in areas of the brain where the application of currently available approaches is restricted.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002249 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02249&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002249

DOI: 10.1371/journal.pcbi.1002249

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1002249