EconPapers    
Economics at your fingertips  
 

Human Visual Search Does Not Maximize the Post-Saccadic Probability of Identifying Targets

Camille Morvan and Laurence T Maloney

PLOS Computational Biology, 2012, vol. 8, issue 2, 1-11

Abstract: Researchers have conjectured that eye movements during visual search are selected to minimize the number of saccades. The optimal Bayesian eye movement strategy minimizing saccades does not simply direct the eye to whichever location is judged most likely to contain the target but makes use of the entire retina as an information gathering device during each fixation. Here we show that human observers do not minimize the expected number of saccades in planning saccades in a simple visual search task composed of three tokens. In this task, the optimal eye movement strategy varied, depending on the spacing between tokens (in the first experiment) or the size of tokens (in the second experiment), and changed abruptly once the separation or size surpassed a critical value. None of our observers changed strategy as a function of separation or size. Human performance fell far short of ideal, both qualitatively and quantitatively. Author Summary: Vision is most sensitive to fine detail at the center of gaze (the fovea). We typically move our eyes several times a second to build up an accurate picture of the world around us and find objects of interest. Very recently, researchers have developed models of how a visual system like ours could search a scene for a specific target with the smallest possible number of eye fixations. In two experiments, we tested the assumptions underlying such models. We set up visual “games” in which observers were rewarded for their performance in moving their eyes once to recognize simple targets. To do well (earn the maximum possible reward), observers had to move their eyes according to the predictions of recent models of eye movement. We found that our observers failed to choose optimal eye movement strategies and failed to maximize their potential winnings. Our results suggest a simpler picture of eye movement selection, driven by a few simple heuristic rules that lead to good but not optimal performance in everyday tasks.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002342 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02342&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002342

DOI: 10.1371/journal.pcbi.1002342

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1002342