EconPapers    
Economics at your fingertips  
 

Joint Analysis of Multiple Metagenomic Samples

Yael Baran and Eran Halperin

PLOS Computational Biology, 2012, vol. 8, issue 2, 1-11

Abstract: The availability of metagenomic sequencing data, generated by sequencing DNA pooled from multiple microbes living jointly, has increased sharply in the last few years with developments in sequencing technology. Characterizing the contents of metagenomic samples is a challenging task, which has been extensively attempted by both supervised and unsupervised techniques, each with its own limitations. Common to practically all the methods is the processing of single samples only; when multiple samples are sequenced, each is analyzed separately and the results are combined. In this paper we propose to perform a combined analysis of a set of samples in order to obtain a better characterization of each of the samples, and provide two applications of this principle. First, we use an unsupervised probabilistic mixture model to infer hidden components shared across metagenomic samples. We incorporate the model in a novel framework for studying association of microbial sequence elements with phenotypes, analogous to the genome-wide association studies performed on human genomes: We demonstrate that stratification may result in false discoveries of such associations, and that the components inferred by the model can be used to correct for this stratification. Second, we propose a novel read clustering (also termed “binning”) algorithm which operates on multiple samples simultaneously, leveraging on the assumption that the different samples contain the same microbial species, possibly in different proportions. We show that integrating information across multiple samples yields more precise binning on each of the samples. Moreover, for both applications we demonstrate that given a fixed depth of coverage, the average per-sample performance generally increases with the number of sequenced samples as long as the per-sample coverage is high enough. Author Summary: Microorganisms are extremely abundant and diverse, and occupy almost every habitat on earth. Most of these habitats contain a complex mixture of many different microorganisms, and the characterization of these metagenomic mixtures, in terms of both taxonomy and function, is of great interest to science and medicine. Current sequencing technologies produce large numbers of short DNA reads copied from the genomes of a metagenomic sample, which can be used to obtain a high resolution characterization of such samples. However, the analysis of such data is complicated by the fact that one cannot tell which sequencing reads originated from the same genome. We show that the joint analysis of multiple metagenomic samples, which takes advantage of the fact that the samples share common microbial types, achieves better single-sample characterization compared to the current analysis methods that operate on single samples only. We demonstrate how this approach can be used to infer microbial components without the use of external sequence data, and to cluster sequencing reads according to their species of origin. In both cases we show that the joint analysis enhances the average single-sample performance, thus providing better sample characterization.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002373 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02373&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002373

DOI: 10.1371/journal.pcbi.1002373

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1002373