Integrating Flux Balance Analysis into Kinetic Models to Decipher the Dynamic Metabolism of Shewanella oneidensis MR-1
Xueyang Feng,
You Xu,
Yixin Chen and
Yinjie J Tang
PLOS Computational Biology, 2012, vol. 8, issue 2, 1-11
Abstract:
Shewanella oneidensis MR-1 sequentially utilizes lactate and its waste products (pyruvate and acetate) during batch culture. To decipher MR-1 metabolism, we integrated genome-scale flux balance analysis (FBA) into a multiple-substrate Monod model to perform the dynamic flux balance analysis (dFBA). The dFBA employed a static optimization approach (SOA) by dividing the batch time into small intervals (i.e., ∼400 mini-FBAs), then the Monod model provided time-dependent inflow/outflow fluxes to constrain the mini-FBAs to profile the pseudo-steady-state fluxes in each time interval. The mini-FBAs used a dual-objective function (a weighted combination of “maximizing growth rate” and “minimizing overall flux”) to capture trade-offs between optimal growth and minimal enzyme usage. By fitting the experimental data, a bi-level optimization of dFBA revealed that the optimal weight in the dual-objective function was time-dependent: the objective function was constant in the early growth stage, while the functional weight of minimal enzyme usage increased significantly when lactate became scarce. The dFBA profiled biologically meaningful dynamic MR-1 metabolisms: 1. the oxidative TCA cycle fluxes increased initially and then decreased in the late growth stage; 2. fluxes in the pentose phosphate pathway and gluconeogenesis were stable in the exponential growth period; and 3. the glyoxylate shunt was up-regulated when acetate became the main carbon source for MR-1 growth. Author Summary: This study integrates two modeling approaches, a Monod kinetic model and genome-scale flux balance analysis, to analyze the dynamic metabolism of an environmentally important bacterium (S. oneidensis MR-1). The modeling results reveal that MR-1 metabolism is suboptimal for biomass growth, while MR-1 continuously reprograms the intracellular flux distributions in adaption to nutrient conditions. This innovative dFBA framework can be widely used to investigate transient cell metabolisms in response to environmental variations. Furthermore, the dFBA is able to simulate metabolite-labeling dynamics in 13C-tracer experiments, and thus can serve as a springboard to advanced 13C-assisted dynamic metabolic flux analysis by using labeled proteinogenic amino acids to improve flux results.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002376 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02376&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002376
DOI: 10.1371/journal.pcbi.1002376
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().