EconPapers    
Economics at your fingertips  
 

Paradoxical Evidence Integration in Rapid Decision Processes

Johannes Rüter, Nicolas Marcille, Henning Sprekeler, Wulfram Gerstner and Michael H Herzog

PLOS Computational Biology, 2012, vol. 8, issue 2, 1-10

Abstract: Decisions about noisy stimuli require evidence integration over time. Traditionally, evidence integration and decision making are described as a one-stage process: a decision is made when evidence for the presence of a stimulus crosses a threshold. Here, we show that one-stage models cannot explain psychophysical experiments on feature fusion, where two visual stimuli are presented in rapid succession. Paradoxically, the second stimulus biases decisions more strongly than the first one, contrary to predictions of one-stage models and intuition. We present a two-stage model where sensory information is integrated and buffered before it is fed into a drift diffusion process. The model is tested in a series of psychophysical experiments and explains both accuracy and reaction time distributions. Author Summary: In models of decision making, evidence is accumulated until it crosses a threshold. The amount of evidence is directly related to the strength of the sensory input for the decision alternatives. Such one-stage models predict that if two stimulus alternatives are presented in succession, the stimulus alternative presented first dominates the decision, as the accumulated evidence will reach the threshold for this alternative first. Here, we show that for short stimulus durations decision making is not dominated by the first, but by the second stimulus. This result cannot be explained by classical one-stage decision models. We present a two-stage model where sensory input is first integrated before its outcome is fed into a classical decision process.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002382 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02382&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002382

DOI: 10.1371/journal.pcbi.1002382

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1002382