EconPapers    
Economics at your fingertips  
 

Depression-Biased Reverse Plasticity Rule Is Required for Stable Learning at Top-Down Connections

Kendra S Burbank and Gabriel Kreiman

PLOS Computational Biology, 2012, vol. 8, issue 3, 1-16

Abstract: Top-down synapses are ubiquitous throughout neocortex and play a central role in cognition, yet little is known about their development and specificity. During sensory experience, lower neocortical areas are activated before higher ones, causing top-down synapses to experience a preponderance of post-synaptic activity preceding pre-synaptic activity. This timing pattern is the opposite of that experienced by bottom-up synapses, which suggests that different versions of spike-timing dependent synaptic plasticity (STDP) rules may be required at top-down synapses. We consider a two-layer neural network model and investigate which STDP rules can lead to a distribution of top-down synaptic weights that is stable, diverse and avoids strong loops. We introduce a temporally reversed rule (rSTDP) where top-down synapses are potentiated if post-synaptic activity precedes pre-synaptic activity. Combining analytical work and integrate-and-fire simulations, we show that only depression-biased rSTDP (and not classical STDP) produces stable and diverse top-down weights. The conclusions did not change upon addition of homeostatic mechanisms, multiplicative STDP rules or weak external input to the top neurons. Our prediction for rSTDP at top-down synapses, which are distally located, is supported by recent neurophysiological evidence showing the existence of temporally reversed STDP in synapses that are distal to the post-synaptic cell body. Author Summary: The complex circuitry in the cerebral cortex is characterized by bottom-up connections, which carry feedforward information from the sensory periphery to higher areas, and top-down connections, where the information flow is reversed. Changes over time in the strength of synaptic connections between neurons underlie development, learning and memory. A fundamental mechanism to change synaptic strength is spike timing dependent plasticity, whereby synapses are strengthened whenever pre-synaptic spikes shortly precede post-synaptic spikes and are weakened otherwise; the relative timing of spikes therefore dictates the direction of plasticity. Spike timing dependent plasticity has been observed in multiple species and different brain areas. Here, we argue that top-down connections obey a learning rule with a reversed temporal dependence, which we call reverse spike timing dependent plasticity. We use mathematical analysis and computational simulations to show that this reverse time learning rule, and not previous learning rules, leads to a biologically plausible connectivity pattern with stable synaptic strengths. This reverse time learning rule is supported by recent neuroanatomical and neurophysiological experiments and can explain empirical observations about the development and function of top-down synapses in the brain.

Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002393 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02393&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002393

DOI: 10.1371/journal.pcbi.1002393

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1002393