Corresponding Functional Dynamics across the Hsp90 Chaperone Family: Insights from a Multiscale Analysis of MD Simulations
Giulia Morra,
Raffaello Potestio,
Cristian Micheletti and
Giorgio Colombo
PLOS Computational Biology, 2012, vol. 8, issue 3, 1-16
Abstract:
Understanding how local protein modifications, such as binding small-molecule ligands, can trigger and regulate large-scale motions of large protein domains is a major open issue in molecular biology. We address various aspects of this problem by analyzing and comparing atomistic simulations of Hsp90 family representatives for which crystal structures of the full length protein are available: mammalian Grp94, yeast Hsp90 and E.coli HtpG. These chaperones are studied in complex with the natural ligands ATP, ADP and in the Apo state. Common key aspects of their functional dynamics are elucidated with a novel multi-scale comparison of their internal dynamics. Starting from the atomic resolution investigation of internal fluctuations and geometric strain patterns, a novel analysis of domain dynamics is developed. The results reveal that the ligand-dependent structural modulations mostly consist of relative rigid-like movements of a limited number of quasi-rigid domains, shared by the three proteins. Two common primary hinges for such movements are identified. The first hinge, whose functional role has been demonstrated by several experimental approaches, is located at the boundary between the N-terminal and Middle-domains. The second hinge is located at the end of a three-helix bundle in the Middle-domain and unfolds/unpacks going from the ATP- to the ADP-state. This latter site could represent a promising novel druggable allosteric site common to all chaperones. Author Summary: Understanding the connections between structure, binding, dynamics and function in proteins is one of the most fascinating problems in biology and is actively investigated experimentally and computationally. In the latter context, significant advancements are possible by exposing the causal link between the fine atomic-scale protein-ligand interactions and the large-scale protein motions. One ideal avenue to explore this relationship is given by proteins of the Hsp90 chaperones family. Their dynamics is regulated by ATP binding and hydrolysis, which activates the onset of large-scale, functional conformational changes. Herein, we concentrated on three homologs with markedly different structural organization—mammalian Grp94, yeast Hsp90 and prokaryotic HtpG—and developed a novel computational multiscale approach to detect and characterize the salient traits of the functionally-oriented internal dynamics of the three chaperones. The comparative analysis, which exploits a novel highly simplified, yet viable, description of the protein internal dynamics, highlights fundamental mechanical aspects that preside the ligand-dependent conformational arrangements in all chaperones. For the three molecules, two corresponding regions are singled out as ligand-susceptible hinges for the large-scale internal motion. On the basis of this and other evidence it is suggested that these regions represent functionally relevant druggable substructures in the discovery of novel allosteric modulators.
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002433 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02433&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002433
DOI: 10.1371/journal.pcbi.1002433
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().