EconPapers    
Economics at your fingertips  
 

The Impact of Imitation on Vaccination Behavior in Social Contact Networks

Martial L Ndeffo Mbah, Jingzhou Liu, Chris T Bauch, Yonas I Tekel, Jan Medlock, Lauren Ancel Meyers and Alison P Galvani

PLOS Computational Biology, 2012, vol. 8, issue 4, 1-10

Abstract: Previous game-theoretic studies of vaccination behavior typically have often assumed that populations are homogeneously mixed and that individuals are fully rational. In reality, there is heterogeneity in the number of contacts per individual, and individuals tend to imitate others who appear to have adopted successful strategies. Here, we use network-based mathematical models to study the effects of both imitation behavior and contact heterogeneity on vaccination coverage and disease dynamics. We integrate contact network epidemiological models with a framework for decision-making, within which individuals make their decisions either based purely on payoff maximization or by imitating the vaccination behavior of a social contact. Simulations suggest that when the cost of vaccination is high imitation behavior may decrease vaccination coverage. However, when the cost of vaccination is small relative to that of infection, imitation behavior increases vaccination coverage, but, surprisingly, also increases the magnitude of epidemics through the clustering of non-vaccinators within the network. Thus, imitation behavior may impede the eradication of infectious diseases. Calculations that ignore behavioral clustering caused by imitation may significantly underestimate the levels of vaccination coverage required to attain herd immunity. Author Summary: Both infectious diseases and behavioral traits can spread via social contacts. Using network-based mathematical models, our study addresses the interplay between these two processes, as disease spreads through a population and individuals copy their social contacts when making vaccination decisions. Imitation can produce clusters of non-vaccinating, susceptible individuals that facilitate relatively large outbreaks of infectious diseases despite high overall vaccination coverage. This may explain, for example, recent measles outbreaks observed in many countries with universal measles vaccination policies. Given that vaccine decisions are likely to be influenced by social contacts and that such imitation can have detrimental epidemiological effects, it is important that policy makers understand its causes, magnitude and implications for disease eradication.

Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002469 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02469&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002469

DOI: 10.1371/journal.pcbi.1002469

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-29
Handle: RePEc:plo:pcbi00:1002469