Exploring the Contextual Sensitivity of Factors that Determine Cell-to-Cell Variability in Receptor-Mediated Apoptosis
Suzanne Gaudet,
Sabrina L Spencer,
William W Chen and
Peter K Sorger
PLOS Computational Biology, 2012, vol. 8, issue 4, 1-15
Abstract:
Stochastic fluctuations in gene expression give rise to cell-to-cell variability in protein levels which can potentially cause variability in cellular phenotype. For TRAIL (TNF-related apoptosis-inducing ligand) variability manifests itself as dramatic differences in the time between ligand exposure and the sudden activation of the effector caspases that kill cells. However, the contribution of individual proteins to phenotypic variability has not been explored in detail. In this paper we use feature-based sensitivity analysis as a means to estimate the impact of variation in key apoptosis regulators on variability in the dynamics of cell death. We use Monte Carlo sampling from measured protein concentration distributions in combination with a previously validated ordinary differential equation model of apoptosis to simulate the dynamics of receptor-mediated apoptosis. We find that variation in the concentrations of some proteins matters much more than variation in others and that precisely which proteins matter depends both on the concentrations of other proteins and on whether correlations in protein levels are taken into account. A prediction from simulation that we confirm experimentally is that variability in fate is sensitive to even small increases in the levels of Bcl-2. We also show that sensitivity to Bcl-2 levels is itself sensitive to the levels of interacting proteins. The contextual dependency is implicit in the mathematical formulation of sensitivity, but our data show that it is also important for biologically relevant parameter values. Our work provides a conceptual and practical means to study and understand the impact of cell-to-cell variability in protein expression levels on cell fate using deterministic models and sampling from parameter distributions. Author Summary: Variability among members of a clonal cell population is increasingly recognized as a near-universal characteristic of prokaryotic and eukaryotic cells. Variability can arise from random fluctuations in the biochemical reactions that control gene transcription, protein synthesis or signal transduction networks. For variability in receptor-mediated signaling responses (in the current work, those activated by the death-inducing ligand TRAIL), we can often distinguish between the influence of stochastic processes that occur prior to ligand exposure and those that occur subsequently. One manifestation of prior variability is cell-to-cell differences in protein concentrations, and this paper uses a combination of modeling and experimentation to ask how these differences impact variability in phenotype, specifically with respect to the timing and probability of cell death. We find that fluctuations in multiple proteins contribute jointly to phenotypic variability, that the contributions of specific proteins to phenotypic variability are highly sensitive to the concentrations of other proteins, and that correlations in protein levels (detectable experimentally) also have a measurable impact on phenotype. Our work provides insight into the regulation of apoptosis and also represents a general approach for understanding cell-to-cell variability in signal transduction pathways.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002482 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02482&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002482
DOI: 10.1371/journal.pcbi.1002482
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().