Tension and Robustness in Multitasking Cellular Networks
Jeffrey V Wong,
Bochong Li and
Lingchong You
PLOS Computational Biology, 2012, vol. 8, issue 4, 1-12
Abstract:
Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters) that generate a particular dynamic are often sub-optimal for others, defining a source of “tension” between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between “one-size-fits-all” solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks. Author Summary: Multitasking pervades our daily lives. For example, the technological devices that we increasingly rely upon are now engineered with such multifunctionality or “integration” in mind. Similarly, cellular networks also multitask in that they generate multiple, distinct dynamics according to their operating context. Here we show that differences in parameter spaces that underlie different dynamics thus cause a “tension”, which ultimately constrains network operation. In particular, our analysis reveals that tension negatively impacts robustness by reducing accessibility of parameters able to accomplish two tasks and reduces their ability to withstand perturbations. The presence of tension and its negative impact on network robustness represents a fundamental, generic constraint on the operation of different multitasking networks.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002491 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02491&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002491
DOI: 10.1371/journal.pcbi.1002491
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().