Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity
Miles Miller,
Marc Hafner,
Eduardo Sontag,
Noah Davidsohn,
Sairam Subramanian,
Priscilla E M Purnick,
Douglas Lauffenburger and
Ron Weiss
PLOS Computational Biology, 2012, vol. 8, issue 7, 1-18
Abstract:
Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis. Diabetes therapy represents a possible application for engineered homeostasis, where genetically programmed stem cells maintain a steady population of β-cells despite continuous turnover. We develop a new iterative process that incorporates modular design principles with hierarchical performance optimization targeted for environments with uncertainty and incomplete information. We employ theoretical analysis and computational simulations of multicellular reaction/diffusion models to design and understand system behavior, and find that certain features often associated with robustness (e.g., multicellular synchronization and noise attenuation) are actually detrimental for tissue homeostasis. We overcome these problems by engineering a new class of genetic modules for ‘synthetic cellular heterogeneity’ that function to generate beneficial population diversity. We design two such modules (an asynchronous genetic oscillator and a signaling throttle mechanism), demonstrate their capacity for enhancing robust control, and provide guidance for experimental implementation with various computational techniques. We found that designing modules for synthetic heterogeneity can be complex, and in general requires a framework for non-linear and multifactorial analysis. Consequently, we adapt a ‘phenotypic sensitivity analysis’ method to determine how functional module behaviors combine to achieve optimal system performance. We ultimately combine this analysis with Bayesian network inference to extract critical, causal relationships between a module's biochemical rate-constants, its high level functional behavior in isolation, and its impact on overall system performance once integrated. Author Summary: Over the last decade several relatively small synthetic gene networks have been successfully implemented and characterized, including oscillators, toggle switches, and intercellular communication systems. However, the ability to engineer large-scale synthetic gene networks for controlling multicellular systems with predictable and robust behavior remains a challenge. Here we present a novel combination of computational methods to aid the iterative design and optimization of such synthetic biological systems. We apply these methods to the design and analysis of an artificial tissue homeostasis system that exhibits coordinated control of cellular proliferation, differentiation, and cell-death. Achieving artificial tissue homeostasis would be therapeutically relevant for diseases such as Type I diabetes, for instance by transplanting genetically engineered stem cells that stably maintain populations of insulin-producing beta-cells despite normal cell death and autoimmune attacks. To manage complexity in the design process, we employ principles of logic abstraction and modularity and investigate their limits in biological networks. In this work, we find factors often associated with robustness (e.g., multicellular synchronization and noise attenuation) to be actually detrimental, and overcome these problems by engineering genetic modules that generate beneficial population heterogeneity. A combination of computational methods elucidates how these modules function to enhance robust control, and provides guidance for experimental implementation.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002579 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02579&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002579
DOI: 10.1371/journal.pcbi.1002579
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().