Structural Investigation of MscL Gating Using Experimental Data and Coarse Grained MD Simulations
Evelyne Deplazes,
Martti Louhivuori,
Dylan Jayatilaka,
Siewert J Marrink and
Ben Corry
PLOS Computational Biology, 2012, vol. 8, issue 9, 1-15
Abstract:
The mechanosensitive channel of large conductance (MscL) has become a model system in which to understand mechanosensation, a process involved in osmoregulation and many other physiological functions. While a high resolution closed state structure is available, details of the open structure and the gating mechanism remain unknown. In this study we combine coarse grained simulations with restraints from EPR and FRET experiments to study the structural changes involved in gating with much greater level of conformational sampling than has previously been possible. We generated a set of plausible open pore structures that agree well with existing open pore structures and gating models. Most interestingly, we found that membrane thinning induces a kink in the upper part of TM1 that causes an outward motion of the periplasmic loop away from the pore centre. This previously unobserved structural change might present a new mechanism of tension sensing and might be related to a functional role in osmoregulation. Author Summary: Cells in biological organisms have to be able to respond to mechanical forces during processes such as touch, hearing, pain sensation and tissue growth. One way this is achieved is through mechanosensitive ion channels, membrane embedded proteins that initiate electrical signalling upon tension within the cell or cell membrane. The malfunction of such channels is also associated with a range of diseases including muscular dystrophy and cardiac arrhythmia. In this manuscript, we study in detail the mechanosensitive channel of large conductance (MscL) from bacteria, a model system in which to understand the principles of mechanosensation. Despite many years of investigative work the details of how the protein senses tension in the surrounding membrane remain unknown. By combining structural data from experiments with computer simulation we are able to model the open channel structure of the protein and report previously unobserved structural changes that might present a new mechanism of sensing tension. The methods developed in this paper are not limited to the study of mechanosensitive ion channels and may be useful in understanding the structure and function of other membrane proteins.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002683 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02683&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002683
DOI: 10.1371/journal.pcbi.1002683
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().