A Model of Reward- and Effort-Based Optimal Decision Making and Motor Control
Lionel Rigoux and
Emmanuel Guigon
PLOS Computational Biology, 2012, vol. 8, issue 10, 1-13
Abstract:
Costs (e.g. energetic expenditure) and benefits (e.g. food) are central determinants of behavior. In ecology and economics, they are combined to form a utility function which is maximized to guide choices. This principle is widely used in neuroscience as a normative model of decision and action, but current versions of this model fail to consider how decisions are actually converted into actions (i.e. the formation of trajectories). Here, we describe an approach where decision making and motor control are optimal, iterative processes derived from the maximization of the discounted, weighted difference between expected rewards and foreseeable motor efforts. The model accounts for decision making in cost/benefit situations, and detailed characteristics of control and goal tracking in realistic motor tasks. As a normative construction, the model is relevant to address the neural bases and pathological aspects of decision making and motor control. Author Summary: Behavior is made of decisions and actions. The decisions are based on the costs and benefits of potential actions, and the chosen actions are executed through the proper control of body segments. The corresponding processes are generally considered in separate theories of decision making and motor control, which cannot explain how the actual costs and benefits of a chosen action can be consistent with the expected costs and benefits involved at the decision stage. Here, we propose an overarching optimal model of decision and motor control based on the maximization of a mixed function of costs and benefits. The model provides a unified account of decision in cost/benefit situations (e.g. choice between small reward/low effort and large reward/high effort options), and motor control in realistic motor tasks. The model appears suitable to advance our understanding of the neural bases and pathological aspects of decision making and motor control.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002716 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02716&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002716
DOI: 10.1371/journal.pcbi.1002716
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().