EconPapers    
Economics at your fingertips  
 

Analysis of Slow (Theta) Oscillations as a Potential Temporal Reference Frame for Information Coding in Sensory Cortices

Christoph Kayser, Robin A A Ince and Stefano Panzeri

PLOS Computational Biology, 2012, vol. 8, issue 10, 1-13

Abstract: While sensory neurons carry behaviorally relevant information in responses that often extend over hundreds of milliseconds, the key units of neural information likely consist of much shorter and temporally precise spike patterns. The mechanisms and temporal reference frames by which sensory networks partition responses into these shorter units of information remain unknown. One hypothesis holds that slow oscillations provide a network-intrinsic reference to temporally partitioned spike trains without exploiting the millisecond-precise alignment of spikes to sensory stimuli. We tested this hypothesis on neural responses recorded in visual and auditory cortices of macaque monkeys in response to natural stimuli. Comparing different schemes for response partitioning revealed that theta band oscillations provide a temporal reference that permits extracting significantly more information than can be obtained from spike counts, and sometimes almost as much information as obtained by partitioning spike trains using precisely stimulus-locked time bins. We further tested the robustness of these partitioning schemes to temporal uncertainty in the decoding process and to noise in the sensory input. This revealed that partitioning using an oscillatory reference provides greater robustness than partitioning using precisely stimulus-locked time bins. Overall, these results provide a computational proof of concept for the hypothesis that slow rhythmic network activity may serve as internal reference frame for information coding in sensory cortices and they foster the notion that slow oscillations serve as key elements for the computations underlying perception. Author Summary: Neurons in sensory cortices encode objects in our sensory environment by varying the timing and number of action potentials that they emit. Brain networks that ‘decode’ this information need to partition those spike trains into their individual informative units. Experimenters achieve such partitioning by exploiting their knowledge about the millisecond precise timing of individual spikes relative to externally presented sensory stimuli. The brain, however, does not have access to this information and has to partition and decode spike trains using intrinsically available temporal reference frames. We show that slow (4–8 Hz) oscillatory network activity can provide such an intrinsic temporal reference. Specifically, we analyzed neural responses recorded in primary auditory and visual cortices. This revealed that the oscillatory reference frame performs nearly as well as the precise stimulus-locked reference frame and renders neural encoding robust to sensory noise and temporal uncertainty that naturally occurs during decoding. These findings provide a computational proof-of-concept that slow oscillatory network activity may serve the crucial function as temporal reference frame for sensory coding.

Date: 2012
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002717 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02717&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002717

DOI: 10.1371/journal.pcbi.1002717

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1002717