Spatially Pooled Contrast Responses Predict Neural and Perceptual Similarity of Naturalistic Image Categories
Iris I A Groen,
Sennay Ghebreab,
Victor A F Lamme and
H Steven Scholte
PLOS Computational Biology, 2012, vol. 8, issue 10, 1-16
Abstract:
The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs) in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis). Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task. Author Summary: Humans excel in rapid and accurate processing of visual scenes. However, it is unclear which computations allow the visual system to convert light hitting the retina into a coherent representation of visual input in a rapid and efficient way. Here we used simple, computer-generated image categories with similar low-level structure as natural scenes to test whether a model of early integration of low-level information can predict perceived category similarity. Specifically, we show that summarized (spatially pooled) responses of model neurons covering the entire visual field (the population response) to low-level properties of visual input (contrasts) can already be informative about differences in early visual evoked activity as well as behavioral confusions of these categories. These results suggest that low-level population responses can carry relevant information to estimate similarity of controlled images, and put forward the exciting hypothesis that the visual system may exploit these responses to rapidly process real natural scenes. We propose that the spatial pooling that allows for the extraction of this information may be a plausible first step in extracting scene gist to form a rapid impression of the visual input.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002726 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02726&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002726
DOI: 10.1371/journal.pcbi.1002726
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().