EconPapers    
Economics at your fingertips  
 

pH-Dependent Conformational Changes in Proteins and Their Effect on Experimental pKas: The Case of Nitrophorin 4

Natali V Di Russo, Dario A Estrin, Marcelo A Martí and Adrian E Roitberg

PLOS Computational Biology, 2012, vol. 8, issue 11, 1-9

Abstract: The acid-base behavior of amino acids is an important subject of study due to their prominent role in enzyme catalysis, substrate binding and protein structure. Due to interactions with the protein environment, their pKas can be shifted from their solution values and, if a protein has two stable conformations, it is possible for a residue to have different “microscopic”, conformation-dependent pKa values. In those cases, interpretation of experimental measurements of the pKa is complicated by the coupling between pH, protonation state and protein conformation. We explored these issues using Nitrophorin 4 (NP4), a protein that releases NO in a pH sensitive manner. At pH 5.5 NP4 is in a closed conformation where NO is tightly bound, while at pH 7.5 Asp30 becomes deprotonated, causing the conformation to change to an open state from which NO can easily escape. Using constant pH molecular dynamics we found two distinct microscopic Asp30 pKas: 8.5 in the closed structure and 4.3 in the open structure. Using a four-state model, we then related the obtained microscopic values to the experimentally observed “apparent” pKa, obtaining a value of 6.5, in excellent agreement with experimental data. This value must be interpreted as the pH at which the closed to open population transition takes place. More generally, our results show that it is possible to relate microscopic structure dependent pKa values to experimentally observed ensemble dependent apparent pKas and that the insight gained in the relatively simple case of NP4 can be useful in several more complex cases involving a pH dependent transition, of great biochemical interest. Author Summary: The interaction of an amino acid with its protein environment can result in an acid-base behavior that is very different from what would be observed in solution. This environment can be greatly altered when the protein changes conformation. As a result, the amino acid will have two different “microscopic” pKa values. Nitrophorin 4 is a good case study to explore this behavior, because it undergoes a pH-dependent conformational change that is well characterized experimentally. Using computer simulation tools, we found that the key titratable Aspartic acid 30, has two very different microscopic pKas: 4.3 and 8.5, which are significantly different to the observed transition pKa in solution. However, using a simple model, we were able to understand how this causes the conformational change to take place at pH∼6.5, as measured experimentally. The insight gained in this relatively simple case can be useful in other more complex cases where the apparent pKa is also a result of the interplay of different conformations where some amino acids experience very different environments.

Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002761 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02761&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002761

DOI: 10.1371/journal.pcbi.1002761

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1002761