EconPapers    
Economics at your fingertips  
 

How Random Is Social Behaviour? Disentangling Social Complexity through the Study of a Wild House Mouse Population

Nicolas Perony, Claudio J Tessone, Barbara König and Frank Schweitzer

PLOS Computational Biology, 2012, vol. 8, issue 11, 1-11

Abstract: Out of all the complex phenomena displayed in the behaviour of animal groups, many are thought to be emergent properties of rather simple decisions at the individual level. Some of these phenomena may also be explained by random processes only. Here we investigate to what extent the interaction dynamics of a population of wild house mice (Mus domesticus) in their natural environment can be explained by a simple stochastic model. We first introduce the notion of perceptual landscape, a novel tool used here to describe the utilisation of space by the mouse colony based on the sampling of individuals in discrete locations. We then implement the behavioural assumptions of the perceptual landscape in a multi-agent simulation to verify their accuracy in the reproduction of observed social patterns. We find that many high-level features – with the exception of territoriality – of our behavioural dataset can be accounted for at the population level through the use of this simplified representation. Our findings underline the potential importance of random factors in the apparent complexity of the mice's social structure. These results resonate in the general context of adaptive behaviour versus elementary environmental interactions. Author Summary: From the synchronised beauty of fish schools to the rigorous hierarchy of ant colonies, animals often display awe-inspiring collective behaviour. In recent years, principles of statistical physics have helped to unveil some simple mechanisms behind the emergence of such collective dynamics. Among the most elementary tools used to explain group behaviour are random processes, a typical example being the so-called “random walk”. In this paper, we have developed a framework based on such random assumptions to study the spatial and social structure of a population of wild house mice. We introduce the concept of perceptual landscape to describe the spatial behaviour of animals, whilst including all sensory and social constraints they are subject to: the perceptual landscape effectively maps the environment of animals as they perceive it. By applying our assumptions to a multi-agent model, we are able to reveal that much of the high-level social behaviour observed in the mouse population can indeed be explained through the many interactions of randomly moving individuals. This raises the question of how much of what we often regard as complex natural phenomena may, in fact, be the result of exceedingly simple forces.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002786 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02786&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002786

DOI: 10.1371/journal.pcbi.1002786

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1002786