Reliable B Cell Epitope Predictions: Impacts of Method Development and Improved Benchmarking
Jens Vindahl Kringelum,
Claus Lundegaard,
Ole Lund and
Morten Nielsen
PLOS Computational Biology, 2012, vol. 8, issue 12, 1-10
Abstract:
The interaction between antibodies and antigens is one of the most important immune system mechanisms for clearing infectious organisms from the host. Antibodies bind to antigens at sites referred to as B-cell epitopes. Identification of the exact location of B-cell epitopes is essential in several biomedical applications such as; rational vaccine design, development of disease diagnostics and immunotherapeutics. However, experimental mapping of epitopes is resource intensive making in silico methods an appealing complementary approach. To date, the reported performance of methods for in silico mapping of B-cell epitopes has been moderate. Several issues regarding the evaluation data sets may however have led to the performance values being underestimated: Rarely, all potential epitopes have been mapped on an antigen, and antibodies are generally raised against the antigen in a given biological context not against the antigen monomer. Improper dealing with these aspects leads to many artificial false positive predictions and hence to incorrect low performance values. To demonstrate the impact of proper benchmark definitions, we here present an updated version of the DiscoTope method incorporating a novel spatial neighborhood definition and half-sphere exposure as surface measure. Compared to other state-of-the-art prediction methods, Discotope-2.0 displayed improved performance both in cross-validation and in independent evaluations. Using DiscoTope-2.0, we assessed the impact on performance when using proper benchmark definitions. For 13 proteins in the training data set where sufficient biological information was available to make a proper benchmark redefinition, the average AUC performance was improved from 0.791 to 0.824. Similarly, the average AUC performance on an independent evaluation data set improved from 0.712 to 0.727. Our results thus demonstrate that given proper benchmark definitions, B-cell epitope prediction methods achieve highly significant predictive performances suggesting these tools to be a powerful asset in rational epitope discovery. The updated version of DiscoTope is available at www.cbs.dtu.dk/services/DiscoTope-2.0. Author Summary: The human immune system has an incredible ability to fight pathogens (bacterial, fungal and viral infections). One of the most important immune system events involved in clearing infectious organisms is the interaction between the antibodies and antigens (molecules such as proteins from the pathogenic organism). Antibodies bind to antigens at sites known as B-cell epitopes. Hence, identification of areas on the surface antigens capable of binding to antibodies (also known as B-cell epitopes) may aid the development of various immune related applications (e.g. vaccines and immunotherapeutic). However, experimental identification of B-cell epitopes is a resource intensive task, thereby making computer-aided methods an appealing complementary approach. Previously reported performances of methods for B cell epitope predictive have been moderate. Here, we present an updated version of the B-cell epitope prediction method; DiscoTope, that on the basis of a protein structure and epitope propensity scores predicts residues likely to be involved in B-cell epitopes. We demonstrate that the low performances to some extent can be explained by poorly defined benchmarks, and that inclusion of additional biological information greatly enhances the predictive performance. This suggests that, given proper benchmark definitions, state-of-the-art B cell epitope prediction methods perform significantly better than generally assumed.
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002829 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02829&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002829
DOI: 10.1371/journal.pcbi.1002829
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().