EconPapers    
Economics at your fingertips  
 

Phyletic Profiling with Cliques of Orthologs Is Enhanced by Signatures of Paralogy Relationships

Nives Škunca, Matko Bošnjak, Anita Kriško, Panče Panov, Sašo Džeroski, Tomislav Šmuc and Fran Supek

PLOS Computational Biology, 2013, vol. 9, issue 1, 1-14

Abstract: New microbial genomes are sequenced at a high pace, allowing insight into the genetics of not only cultured microbes, but a wide range of metagenomic collections such as the human microbiome. To understand the deluge of genomic data we face, computational approaches for gene functional annotation are invaluable. We introduce a novel model for computational annotation that refines two established concepts: annotation based on homology and annotation based on phyletic profiling. The phyletic profiling-based model that includes both inferred orthologs and paralogs—homologs separated by a speciation and a duplication event, respectively—provides more annotations at the same average Precision than the model that includes only inferred orthologs. For experimental validation, we selected 38 poorly annotated Escherichia coli genes for which the model assigned one of three GO terms with high confidence: involvement in DNA repair, protein translation, or cell wall synthesis. Results of antibiotic stress survival assays on E. coli knockout mutants showed high agreement with our model's estimates of accuracy: out of 38 predictions obtained at the reported Precision of 60%, we confirmed 25 predictions, indicating that our confidence estimates can be used to make informed decisions on experimental validation. Our work will contribute to making experimental validation of computational predictions more approachable, both in cost and time. Our predictions for 998 prokaryotic genomes include ∼400000 specific annotations with the estimated Precision of 90%, ∼19000 of which are highly specific—e.g. “penicillin binding,” “tRNA aminoacylation for protein translation,” or “pathogenesis”—and are freely available at http://gorbi.irb.hr/. Author Summary: While both the number and the diversity of sequenced prokaryotic genomes grow rapidly, the number of specific assignments of gene functions in the databases remains low and skewed toward the model prokaryote Escherichia coli. To aid in understanding the full set of newly sequenced genes, we created a computational model for assignment of function to prokaryotic genomes. The result is an innovative framework for orthology and paralogy-aware phyletic profiling that provides a large number of computational annotations with high predictive accuracy in train/test evaluations. Our predictions include annotations for 1.3 million genes with the estimated Precision of 90%; these, and many more predictions for 998 prokaryotic genomes are freely available at http://gorbi.irb.hr/. More importantly, we show a proof of principle that our functional annotation model can be used to generate new biological hypotheses: we performed experiments on 38 E. coli knockout mutants and showed that our annotation model provides realistic estimates of predictive accuracy. With this, our work will contribute to making experimental validation of computational predictions more approachable, both in cost and time.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002852 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02852&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002852

DOI: 10.1371/journal.pcbi.1002852

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1002852