Passive Dendrites Enable Single Neurons to Compute Linearly Non-separable Functions
Romain Daniel Cazé,
Mark Humphries and
Boris Gutkin
PLOS Computational Biology, 2013, vol. 9, issue 2, 1-15
Abstract:
Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear, and where dendritic sub-units are only saturating. To determine if such neurons can also compute linearly non-separable functions, we enumerate, for a given parameter range, the Boolean functions implementable by a binary neuron model with a linear sub-unit and either a single spiking or a saturating dendritic sub-unit. We then analytically generalize these numerical results to an arbitrary number of non-linear sub-units. First, we show that a single non-linear dendritic sub-unit, in addition to the somatic non-linearity, is sufficient to compute linearly non-separable functions. Second, we analytically prove that, with a sufficient number of saturating dendritic sub-units, a neuron can compute all functions computable with purely excitatory inputs. Third, we show that these linearly non-separable functions can be implemented with at least two strategies: one where a dendritic sub-unit is sufficient to trigger a somatic spike; another where somatic spiking requires the cooperation of multiple dendritic sub-units. We formally prove that implementing the latter architecture is possible with both types of dendritic sub-units whereas the former is only possible with spiking dendrites. Finally, we show how linearly non-separable functions can be computed by a generic two-compartment biophysical model and a realistic neuron model of the cerebellar stellate cell interneuron. Taken together our results demonstrate that passive dendrites are sufficient to enable neurons to compute linearly non-separable functions. Author Summary: Classical views on single neuron computation treat dendrites as mere collectors of inputs, that is forwarded to the soma for linear summation and causes a spike output if it is sufficiently large. Such a single neuron model can only compute linearly separable input-output functions, representing a small fraction of all possible functions. Recent experimental findings show that in certain pyramidal cells excitatory inputs can be supra-linearly integrated within a dendritic branch, turning this branch into a spiking dendritic sub-unit. Neurons containing many of these dendritic sub-units can compute both linearly separable and linearly non-separable functions. Nevertheless, other neuron types have dendrites which do not spike because the required voltage gated channels are absent. However, these dendrites sub-linearly sum excitatory inputs turning branches into saturating sub-units. We wanted to test if this last type of non-linear summation is sufficient for a single neuron to compute linearly non-separable functions. Using a combination of Boolean algebra and biophysical modeling, we show that a neuron with a single non-linear dendritic sub-unit whether spiking or saturating is able to compute linearly non-separable functions. Thus, in principle, any neuron with a dendritic tree, even passive, can compute linearly non-separable functions.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002867 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02867&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002867
DOI: 10.1371/journal.pcbi.1002867
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().