Noise Suppression and Surplus Synchrony by Coincidence Detection
Matthias Schultze-Kraft,
Markus Diesmann,
Sonja Grün and
Moritz Helias
PLOS Computational Biology, 2013, vol. 9, issue 4, 1-15
Abstract:
The functional significance of correlations between action potentials of neurons is still a matter of vivid debate. In particular, it is presently unclear how much synchrony is caused by afferent synchronized events and how much is intrinsic due to the connectivity structure of cortex. The available analytical approaches based on the diffusion approximation do not allow to model spike synchrony, preventing a thorough analysis. Here we theoretically investigate to what extent common synaptic afferents and synchronized inputs each contribute to correlated spiking on a fine temporal scale between pairs of neurons. We employ direct simulation and extend earlier analytical methods based on the diffusion approximation to pulse-coupling, allowing us to introduce precisely timed correlations in the spiking activity of the synaptic afferents. We investigate the transmission of correlated synaptic input currents by pairs of integrate-and-fire model neurons, so that the same input covariance can be realized by common inputs or by spiking synchrony. We identify two distinct regimes: In the limit of low correlation linear perturbation theory accurately determines the correlation transmission coefficient, which is typically smaller than unity, but increases sensitively even for weakly synchronous inputs. In the limit of high input correlation, in the presence of synchrony, a qualitatively new picture arises. As the non-linear neuronal response becomes dominant, the output correlation becomes higher than the total correlation in the input. This transmission coefficient larger unity is a direct consequence of non-linear neural processing in the presence of noise, elucidating how synchrony-coded signals benefit from these generic properties present in cortical networks.Author Summary: Whether spike timing conveys information in cortical networks or whether the firing rate alone is sufficient is a matter of controversial debate, touching the fundamental question of how the brain processes, stores, and conveys information. If the firing rate alone is the decisive signal used in the brain, correlations between action potentials are just an epiphenomenon of cortical connectivity, where pairs of neurons share a considerable fraction of common afferents. Due to membrane leakage, small synaptic amplitudes and the non-linear threshold, nerve cells exhibit lossy transmission of correlation originating from shared synaptic inputs. However, the membrane potential of cortical neurons often displays non-Gaussian fluctuations, caused by synchronized synaptic inputs. Moreover, synchronously active neurons have been found to reflect behavior in primates. In this work we therefore contrast the transmission of correlation due to shared afferents and due to synchronously arriving synaptic impulses for leaky neuron models. We not only find that neurons are highly sensitive to synchronous afferents, but that they can suppress noise on signals transmitted by synchrony, a computational advantage over rate signals.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002904 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02904&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002904
DOI: 10.1371/journal.pcbi.1002904
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().