EconPapers    
Economics at your fingertips  
 

Noise-invariant Neurons in the Avian Auditory Cortex: Hearing the Song in Noise

R Channing Moore, Tyler Lee and Frédéric E Theunissen

PLOS Computational Biology, 2013, vol. 9, issue 3, 1-14

Abstract: Given the extraordinary ability of humans and animals to recognize communication signals over a background of noise, describing noise invariant neural responses is critical not only to pinpoint the brain regions that are mediating our robust perceptions but also to understand the neural computations that are performing these tasks and the underlying circuitry. Although invariant neural responses, such as rotation-invariant face cells, are well described in the visual system, high-level auditory neurons that can represent the same behaviorally relevant signal in a range of listening conditions have yet to be discovered. Here we found neurons in a secondary area of the avian auditory cortex that exhibit noise-invariant responses in the sense that they responded with similar spike patterns to song stimuli presented in silence and over a background of naturalistic noise. By characterizing the neurons' tuning in terms of their responses to modulations in the temporal and spectral envelope of the sound, we then show that noise invariance is partly achieved by selectively responding to long sounds with sharp spectral structure. Finally, to demonstrate that such computations could explain noise invariance, we designed a biologically inspired noise-filtering algorithm that can be used to separate song or speech from noise. This novel noise-filtering method performs as well as other state-of-the-art de-noising algorithms and could be used in clinical or consumer oriented applications. Our biologically inspired model also shows how high-level noise-invariant responses could be created from neural responses typically found in primary auditory cortex. Author Summary: Birds and humans excel at the task of detecting important sounds, such as song and speech, in difficult listening environments such as in a large bird colony or in a crowded bar. How our brains achieve such a feat remains a mystery to both neuroscientists and audio engineers. In our research, we found a population of neurons in the brain of songbirds that are able to extract a song signal from a background of noise. We explain how the neurons are able to perform this task and show how a biologically inspired algorithm could outperform the best noise-reduction methods proposed by engineers.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002942 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02942&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002942

DOI: 10.1371/journal.pcbi.1002942

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1002942