Policy Resistance Undermines Superspreader Vaccination Strategies for Influenza
Chad R Wells,
Eili Y Klein and
Chris T Bauch
PLOS Computational Biology, 2013, vol. 9, issue 3, 1-9
Abstract:
Theoretical models of infection spread on networks predict that targeting vaccination at individuals with a very large number of contacts (superspreaders) can reduce infection incidence by a significant margin. These models generally assume that superspreaders will always agree to be vaccinated. Hence, they cannot capture unintended consequences such as policy resistance, where the behavioral response induced by a new vaccine policy tends to reduce the expected benefits of the policy. Here, we couple a model of influenza transmission on an empirically-based contact network with a psychologically structured model of influenza vaccinating behavior, where individual vaccinating decisions depend on social learning and past experiences of perceived infections, vaccine complications and vaccine failures. We find that policy resistance almost completely undermines the effectiveness of superspreader strategies: the most commonly explored approaches that target a randomly chosen neighbor of an individual, or that preferentially choose neighbors with many contacts, provide at best a relative improvement over their non-targeted counterpart as compared to when behavioral feedbacks are ignored. Increased vaccine coverage in super spreaders is offset by decreased coverage in non-superspreaders, and superspreaders also have a higher rate of perceived vaccine failures on account of being infected more often. Including incentives for vaccination provides modest improvements in outcomes. We conclude that the design of influenza vaccine strategies involving widespread incentive use and/or targeting of superspreaders should account for policy resistance, and mitigate it whenever possible. Author Summary: Superspreaders are the small number of individuals responsible for the majority of infections. Theoretical models have shown how vaccinating superspreaders can be a highly efficient way to control disease. However, these models neglect behavior by assuming that superspreaders will always agree to be vaccinated. This is a problematic assumption for influenza vaccination, which is voluntary in most populations, and for which vaccine coverage is often suboptimal. We developed a model of seasonal influenza transmission on a network of individuals who make decisions about whether or not to get vaccinated based on known determinants of vaccine uptake, such as personal infection history, perceived vaccine risks, and social influences. We found that, because of feedbacks between disease spread and individual vaccinating behavior, attempts to boost vaccine coverage in superspreaders through the use of incentives or recruiting by social contacts are almost completely undermined by such feedbacks. For example, higher vaccine uptake in superspreaders reduces influenza incidence, which in the next season reduces the perceived need for vaccination among non-superspreaders, who then do not become vaccinated as much. Our results suggest that the design of potential strategies to reach influenza superspreaders should account for behavioral feedbacks, since they may blunt policy effectiveness.
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002945 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02945&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002945
DOI: 10.1371/journal.pcbi.1002945
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().