Optimal Vaccine Allocation for the Early Mitigation of Pandemic Influenza
Laura Matrajt,
M Elizabeth Halloran and
Ira M Longini
PLOS Computational Biology, 2013, vol. 9, issue 3, 1-15
Abstract:
With new cases of avian influenza H5N1 (H5N1AV) arising frequently, the threat of a new influenza pandemic remains a challenge for public health. Several vaccines have been developed specifically targeting H5N1AV, but their production is limited and only a few million doses are readily available. Because there is an important time lag between the emergence of new pandemic strain and the development and distribution of a vaccine, shortage of vaccine is very likely at the beginning of a pandemic. We coupled a mathematical model with a genetic algorithm to optimally and dynamically distribute vaccine in a network of cities, connected by the airline transportation network. By minimizing the illness attack rate (i.e., the percentage of people in the population who become infected and ill), we focus on optimizing vaccine allocation in a network of 16 cities in Southeast Asia when only a few million doses are available. In our base case, we assume the vaccine is well-matched and vaccination occurs 5 to 10 days after the beginning of the epidemic. The effectiveness of all the vaccination strategies drops off as the timing is delayed or the vaccine is less well-matched. Under the best assumptions, optimal vaccination strategies substantially reduced the illness attack rate, with a maximal reduction in the attack rate of 85%. Furthermore, our results suggest that cooperative strategies where the resources are optimally distributed among the cities perform much better than the strategies where the vaccine is equally distributed among the network, yielding an illness attack rate 17% lower. We show that it is possible to significantly mitigate a more global epidemic with limited quantities of vaccine, provided that the vaccination campaign is extremely fast and it occurs within the first weeks of transmission. Author Summary: In the past, the emergence of new strains of influenza has been sometimes responsible for large and deadly pandemics. With a very high mortality rate, (i.e., about 60% of the reported cases), H5N1AV influenza, commonly known as bird flu, is thought to be an important potential threat for a new pandemic. Because of this, several vaccines have been developed, but only a few million doses are readily available. Other zoonotic influenza strains, particularly in pigs, also threaten, and vaccines are being produced for them as well. In the event of an influenza pandemic, utilizing these resources optimally could make the difference between dealing with a serious infectious disease at a global scale and reducing it to a highly localized and controlled outbreak. In this paper, we address this issue by developing a mathematical model of influenza transmission on a network of cities. We couple the model with an optimization algorithm to allocate vaccine in time and space through the network. We find that our optimal allocation strategies can mitigate a pandemic, provided that vaccination occurs quickly, within the first weeks of a potential pandemic. In addition, our analysis highlights the importance of cooperative and coordinated vaccine distribution, if we want to mitigate a pandemic.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002964 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02964&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002964
DOI: 10.1371/journal.pcbi.1002964
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().