EconPapers    
Economics at your fingertips  
 

Differential Expression Analysis for Pathways

Winston A Haynes, Roger Higdon, Larissa Stanberry, Dwayne Collins and Eugene Kolker

PLOS Computational Biology, 2013, vol. 9, issue 3, 1-17

Abstract: Life science technologies generate a deluge of data that hold the keys to unlocking the secrets of important biological functions and disease mechanisms. We present DEAP, Differential Expression Analysis for Pathways, which capitalizes on information about biological pathways to identify important regulatory patterns from differential expression data. DEAP makes significant improvements over existing approaches by including information about pathway structure and discovering the most differentially expressed portion of the pathway. On simulated data, DEAP significantly outperformed traditional methods: with high differential expression, DEAP increased power by two orders of magnitude; with very low differential expression, DEAP doubled the power. DEAP performance was illustrated on two different gene and protein expression studies. DEAP discovered fourteen important pathways related to chronic obstructive pulmonary disease and interferon treatment that existing approaches omitted. On the interferon study, DEAP guided focus towards a four protein path within the 26 protein Notch signalling pathway. Author Summary: The data deluge represents a growing challenge for life sciences. Within this sea of data surely lie many secrets to understanding important biological and medical systems. To quantify important patterns in this data, we present DEAP (Differential Expression Analysis for Pathways). DEAP amalgamates information about biological pathway structure and differential expression to identify important patterns of regulation. On both simulated and biological data, we show that DEAP is able to identify key mechanisms while making significant improvements over existing methodologies. For example, on the interferon study, DEAP uniquely identified both the interferon gamma signalling pathway and the JAK STAT signalling pathway.

Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002967 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02967&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002967

DOI: 10.1371/journal.pcbi.1002967

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1002967