Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input
Jonathan J Hunt,
Peter Dayan and
Geoffrey J Goodhill
PLOS Computational Biology, 2013, vol. 9, issue 5, 1-17
Abstract:
Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields.Author Summary: The responses of neurons in the primary visual cortex (V1), a region of the brain involved in encoding visual input, are modified by the visual experience of the animal during development. For example, most neurons in animals reared viewing stripes of a particular orientation only respond to the orientation that the animal experienced. The responses of V1 cells in normal animals are similar to responses that simple optimisation algorithms can learn when trained on images. However, whether the similarity between these algorithms and V1 responses is merely coincidental has been unclear. Here, we used the results of a number of experiments where animals were reared with modified visual experience to test the explanatory power of three related optimisation algorithms. We did this by filtering the images for the algorithms in ways that mimicked the visual experience of the animals. This allowed us to show that the changes in V1 responses in experiment were consistent with the algorithms. This is evidence that the precepts of the algorithms, notably sparsity, can be used to understand the development of V1 responses. Further, we used our model to propose a novel rearing condition which we expect to have a dramatic effect on development.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003005 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03005&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003005
DOI: 10.1371/journal.pcbi.1003005
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().