Polymorphisms in the F8 Gene and MHC-II Variants as Risk Factors for the Development of Inhibitory Anti-Factor VIII Antibodies during the Treatment of Hemophilia A: A Computational Assessment
Gouri Shankar Pandey,
Chen Yanover,
Tom E Howard and
Zuben E Sauna
PLOS Computational Biology, 2013, vol. 9, issue 5, 1-11
Abstract:
The development of neutralizing anti-drug-antibodies to the Factor VIII protein-therapeutic is currently the most significant impediment to the effective management of hemophilia A. Common non-synonymous single nucleotide polymorphisms (ns-SNPs) in the F8 gene occur as six haplotypes in the human population (denoted H1 to H6) of which H3 and H4 have been associated with an increased risk of developing anti-drug antibodies. There is evidence that CD4+ T-cell response is essential for the development of anti-drug antibodies and such a response requires the presentation of the peptides by the MHC-class-II (MHC-II) molecules of the patient. We measured the binding and half-life of peptide-MHC-II complexes using synthetic peptides from regions of the Factor VIII protein where ns-SNPs occur and showed that these wild type peptides form stable complexes with six common MHC-II alleles, representing 46.5% of the North American population. Next, we compared the affinities computed by NetMHCIIpan, a neural network-based algorithm for MHC-II peptide binding prediction, to the experimentally measured values and concluded that these are in good agreement (area under the ROC-curve of 0.778 to 0.972 for the six MHC-II variants). Using a computational binding predictor, we were able to expand our analysis to (a) include all wild type peptides spanning each polymorphic position; and (b) consider more MHC-II variants, thus allowing for a better estimation of the risk for clinical manifestation of anti-drug antibodies in the entire population (or a specific sub-population). Analysis of these computational data confirmed that peptides which have the wild type sequence at positions where the polymorphisms associated with haplotypes H3, H4 and H5 occur bind MHC-II proteins significantly more than a negative control. Taken together, the experimental and computational results suggest that wild type peptides from polymorphic regions of FVIII constitute potential T-cell epitopes and thus could explain the increased incidence of anti-drug antibodies in hemophilia A patients with haplotypes H3 and H4.Author Summary: The development of anti-drug antibodies to therapeutic proteins is a significant impediment to development and licensure of therapeutic proteins and limits their clinical utility. The development of such antibodies requires CD4+ T-cell activation, which is mediated by the recognition of epitopes presented by MHC class-II (MHC-II) molecules. Here, we use experimental measurements and computational predictions of peptide-MHC-II affinities to study the clinical observation that African-American hemophilia A patients have a higher incidence of anti-drug antibodies to Factor VIII than Caucasian patients. Specifically, we used the experimental data to select and validate a computational prediction method which, in turn, allowed us to expand our analysis to a larger repertoire of peptide-MHC-II complexes. We showed that wild type peptides spanning haplotype polymorphisms common in the African American population bind MHC-II proteins significantly more than a negative control, thus providing a mechanistic explanation of the phenomenon in this population.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003066 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03066&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003066
DOI: 10.1371/journal.pcbi.1003066
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().