Integrative Analysis of Deep Sequencing Data Identifies Estrogen Receptor Early Response Genes and Links ATAD3B to Poor Survival in Breast Cancer
Kristian Ovaska,
Filomena Matarese,
Korbinian Grote,
Iryna Charapitsa,
Alejandra Cervera,
Chengyu Liu,
George Reid,
Martin Seifert,
Hendrik G Stunnenberg and
Sampsa Hautaniemi
PLOS Computational Biology, 2013, vol. 9, issue 6, 1-13
Abstract:
Identification of responsive genes to an extra-cellular cue enables characterization of pathophysiologically crucial biological processes. Deep sequencing technologies provide a powerful means to identify responsive genes, which creates a need for computational methods able to analyze dynamic and multi-level deep sequencing data. To answer this need we introduce here a data-driven algorithm, SPINLONG, which is designed to search for genes that match the user-defined hypotheses or models. SPINLONG is applicable to various experimental setups measuring several molecular markers in parallel. To demonstrate the SPINLONG approach, we analyzed ChIP-seq data reporting PolII, estrogen receptor (), H3K4me3 and H2A.Z occupancy at five time points in the MCF-7 breast cancer cell line after estradiol stimulus. We obtained 777 early responsive genes and compared the biological functions of the genes having binding within 20 kb of the transcription start site (TSS) to genes without such binding site. Our results show that the non-genomic action of via the MAPK pathway, instead of direct binding, may be responsible for early cell responses to activation. Our results also indicate that the responsive genes triggered by the genomic pathway are transcribed faster than those without binding sites. The survival analysis of the 777 responsive genes with 150 primary breast cancer tumors and in two independent validation cohorts indicated the ATAD3B gene, which does not have binding site within 20 kb of its TSS, to be significantly associated with poor patient survival.Author Summary: Cellular processes in mammalian cells are tightly regulated to ensure that the cells function properly as a part of an organism. Dysregulation of some of these processes, such as apoptosis, cell proliferation and growth, can lead to cancer. One of the most important regulation mechanisms for cellular processes is via activation of membrane receptors by extra-cellular stimulus. Such cues trigger signal cascades that lead to altered expression of a number of genes in the cell nucleus; a key challenge in biomedicine is to identify which genes respond to a specific stimulus. These so called response genes can be investigated on a whole-genome scale with genomic sequencing, which is a technology that can quantify protein binding to DNA or gene activation. Analysis of such whole-genome data, however, is challenging due to billions of data points measured in the experiments. Here we introduce a novel computational method, SPINLONG, which is a widely applicable novel computational method that integrates multiple levels of deep sequencing data to produce experimentally testable hypotheses. We applied SPINLONG to breast cancer data and found early responsive genes for estrogen receptor and analyzed their regulation. These analyses resulted in a gene whose high activity is associated with decreased breast cancer patient survival.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003100 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03100&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003100
DOI: 10.1371/journal.pcbi.1003100
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().