EconPapers    
Economics at your fingertips  
 

Task-Based Core-Periphery Organization of Human Brain Dynamics

Danielle S Bassett, Nicholas F Wymbs, M Puck Rombach, Mason A Porter, Peter J Mucha and Scott T Grafton

PLOS Computational Biology, 2013, vol. 9, issue 9, 1-16

Abstract: As a person learns a new skill, distinct synapses, brain regions, and circuits are engaged and change over time. In this paper, we develop methods to examine patterns of correlated activity across a large set of brain regions. Our goal is to identify properties that enable robust learning of a motor skill. We measure brain activity during motor sequencing and characterize network properties based on coherent activity between brain regions. Using recently developed algorithms to detect time-evolving communities, we find that the complex reconfiguration patterns of the brain's putative functional modules that control learning can be described parsimoniously by the combined presence of a relatively stiff temporal core that is composed primarily of sensorimotor and visual regions whose connectivity changes little in time and a flexible temporal periphery that is composed primarily of multimodal association regions whose connectivity changes frequently. The separation between temporal core and periphery changes over the course of training and, importantly, is a good predictor of individual differences in learning success. The core of dynamically stiff regions exhibits dense connectivity, which is consistent with notions of core-periphery organization established previously in social networks. Our results demonstrate that core-periphery organization provides an insightful way to understand how putative functional modules are linked. This, in turn, enables the prediction of fundamental human capacities, including the production of complex goal-directed behavior.Author Summary: When someone learns a new skill, his/her brain dynamically alters individual synapses, regional activity, and larger-scale circuits. In this paper, we capture some of these dynamics by measuring and characterizing patterns of coherent brain activity during the learning of a motor skill. We extract time-evolving communities from these patterns and find that a temporal core that is composed primarily of primary sensorimotor and visual regions reconfigures little over time, whereas a periphery that is composed primarily of multimodal association regions reconfigures frequently. The core consists of densely connected nodes, and the periphery consists of sparsely connected nodes. Individual participants with a larger separation between core and periphery learn better in subsequent training sessions than individuals with a smaller separation. Conceptually, core-periphery organization provides a framework in which to understand how putative functional modules are linked. This, in turn, enables the prediction of fundamental human capacities, including the production of complex goal-directed behavior.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003171 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03171&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003171

DOI: 10.1371/journal.pcbi.1003171

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1003171