EconPapers    
Economics at your fingertips  
 

Determinants of Beat-to-Beat Variability of Repolarization Duration in the Canine Ventricular Myocyte: A Computational Analysis

Jordi Heijman, Antonio Zaza, Daniel M Johnson, Yoram Rudy, Ralf L M Peeters, Paul G A Volders and Ronald L Westra

PLOS Computational Biology, 2013, vol. 9, issue 8, 1-14

Abstract: Beat-to-beat variability of repolarization duration (BVR) is an intrinsic characteristic of cardiac function and a better marker of proarrhythmia than repolarization prolongation alone. The ionic mechanisms underlying baseline BVR in physiological conditions, its rate dependence, and the factors contributing to increased BVR in pathologies remain incompletely understood. Here, we employed computer modeling to provide novel insights into the subcellular mechanisms of BVR under physiological conditions and during simulated drug-induced repolarization prolongation, mimicking long-QT syndromes type 1, 2, and 3. We developed stochastic implementations of 13 major ionic currents and fluxes in a model of canine ventricular-myocyte electrophysiology. Combined stochastic gating of these components resulted in short- and long-term variability, consistent with experimental data from isolated canine ventricular myocytes. The model indicated that the magnitude of stochastic fluctuations is rate dependent due to the rate dependence of action-potential (AP) duration (APD). This process (the “active” component) and the intrinsic nonlinear relationship between membrane current and APD (“intrinsic component”) contribute to the rate dependence of BVR. We identified a major role in physiological BVR for stochastic gating of the persistent Na+ current (INa) and rapidly activating delayed-rectifier K+ current (IKr). Inhibition of IKr or augmentation of INa significantly increased BVR, whereas subsequent β-adrenergic receptor stimulation reduced it, similar to experimental findings in isolated myocytes. In contrast, β-adrenergic stimulation increased BVR in simulated long-QT syndrome type 1. In addition to stochastic channel gating, AP morphology, APD, and beat-to-beat variations in Ca2+ were found to modulate single-cell BVR. Cell-to-cell coupling decreased BVR and this was more pronounced when a model cell with increased BVR was coupled to a model cell with normal BVR. In conclusion, our results provide new insights into the ionic mechanisms underlying BVR and suggest that BVR reflects multiple potentially proarrhythmic parameters, including increased ion-channel stochasticity, prolonged APD, and abnormal Ca2+ handling.Author Summary: Every heartbeat has an electrical recovery (repolarization) interval that varies in duration from beat to beat. Excessive beat-to-beat variability of repolarization duration has been shown to be a risk marker of potentially fatal heart-rhythm disorders, but the contributing subcellular mechanisms remain incompletely understood. Computational models have greatly enhanced our understanding of several basic electrophysiological mechanisms. We developed a detailed computer model of the ventricular myocyte that can simulate beat-to-beat changes in repolarization duration by taking into account stochastic changes in the opening and closing of individual ion channels responsible for all main ion currents. The model accurately reproduced experimental data from isolated myocytes under both physiological and pathological conditions. Using the model, we identified several mechanisms contributing to repolarization variability, including stochastic gating of ion channels, duration and morphology of the repolarization phase, and intracellular calcium handling, thereby providing insights into its basis as a proarrhythmic marker. Our computer model provides a detailed framework to study the dynamics of cardiac electrophysiology and arrhythmias.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003202 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03202&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003202

DOI: 10.1371/journal.pcbi.1003202

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1003202