GINI: From ISH Images to Gene Interaction Networks
Kriti Puniyani and
Eric P Xing
PLOS Computational Biology, 2013, vol. 9, issue 10, 1-15
Abstract:
Accurate inference of molecular and functional interactions among genes, especially in multicellular organisms such as Drosophila, often requires statistical analysis of correlations not only between the magnitudes of gene expressions, but also between their temporal-spatial patterns. The ISH (in-situ-hybridization)-based gene expression micro-imaging technology offers an effective approach to perform large-scale spatial-temporal profiling of whole-body mRNA abundance. However, analytical tools for discovering gene interactions from such data remain an open challenge due to various reasons, including difficulties in extracting canonical representations of gene activities from images, and in inference of statistically meaningful networks from such representations. In this paper, we present GINI, a machine learning system for inferring gene interaction networks from Drosophila embryonic ISH images. GINI builds on a computer-vision-inspired vector-space representation of the spatial pattern of gene expression in ISH images, enabled by our recently developed system; and a new multi-instance-kernel algorithm that learns a sparse Markov network model, in which, every gene (i.e., node) in the network is represented by a vector-valued spatial pattern rather than a scalar-valued gene intensity as in conventional approaches such as a Gaussian graphical model. By capturing the notion of spatial similarity of gene expression, and at the same time properly taking into account the presence of multiple images per gene via multi-instance kernels, GINI is well-positioned to infer statistically sound, and biologically meaningful gene interaction networks from image data. Using both synthetic data and a small manually curated data set, we demonstrate the effectiveness of our approach in network building. Furthermore, we report results on a large publicly available collection of Drosophila embryonic ISH images from the Berkeley Drosophila Genome Project, where GINI makes novel and interesting predictions of gene interactions. Software for GINI is available at http://sailing.cs.cmu.edu/Drosophila_ISH_images/Author Summary: As high-throughput technologies for molecular abundance profiling are becoming more inexpensive and accessible, computational inference of gene interaction networks from such data based on well-founded statistical principles is imperative to advance the understanding of regulatory mechanisms in various biological systems. Reverse engineering of gene networks has traditionally relied on analysis of whole-genome microarray data; here we present a new method, GINI, to infer gene networks from ISH images, thereby enabling exploration of spatial characteristics of gene expressions for network inference. Our method generates a Markov network, which encapsulates globally meaningful statistical-dependencies from vector-valued gene spatial patterns. In other words, we advance the state-of-art in both the usage of richer forms of expression data, and the employment of principled statistical methodology for sound network inference on such new form of data. Our results show that analyzing the spatial distribution of gene expression enables us to capture information not available from microarray data. Such an analysis is especially important in analyzing genes involved in embryonic development of Drosophila to reveal specific spatial patterning that determines the development of the 14 segments of the adult fly.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003227 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03227&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003227
DOI: 10.1371/journal.pcbi.1003227
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().