Machines vs. Ensembles: Effective MAPK Signaling through Heterogeneous Sets of Protein Complexes
Ryan Suderman and
Eric J Deeds
PLOS Computational Biology, 2013, vol. 9, issue 10, 1-11
Abstract:
Despite the importance of intracellular signaling networks, there is currently no consensus regarding the fundamental nature of the protein complexes such networks employ. One prominent view involves stable signaling machines with well-defined quaternary structures. The combinatorial complexity of signaling networks has led to an opposing perspective, namely that signaling proceeds via heterogeneous pleiomorphic ensembles of transient complexes. Since many hypotheses regarding network function rely on how we conceptualize signaling complexes, resolving this issue is a central problem in systems biology. Unfortunately, direct experimental characterization of these complexes has proven technologically difficult, while combinatorial complexity has prevented traditional modeling methods from approaching this question. Here we employ rule-based modeling, a technique that overcomes these limitations, to construct a model of the yeast pheromone signaling network. We found that this model exhibits significant ensemble character while generating reliable responses that match experimental observations. To contrast the ensemble behavior, we constructed a model that employs hierarchical assembly pathways to produce scaffold-based signaling machines. We found that this machine model could not replicate the experimentally observed combinatorial inhibition that arises when the scaffold is overexpressed. This finding provides evidence against the hierarchical assembly of machines in the pheromone signaling network and suggests that machines and ensembles may serve distinct purposes in vivo. In some cases, e.g. core enzymatic activities like protein synthesis and degradation, machines assembled via hierarchical energy landscapes may provide functional stability for the cell. In other cases, such as signaling, ensembles may represent a form of weak linkage, facilitating variation and plasticity in network evolution. The capacity of ensembles to signal effectively will ultimately shape how we conceptualize the function, evolution and engineering of signaling networks.Author Summary: Intracellular signaling networks are central to a cell's ability to adapt to its environment. Developing the capacity to effectively manipulate such networks would have a wide range of applications, from cancer therapy to synthetic biology. This requires a thorough understanding of the mechanisms of signal transduction, particularly the kinds of protein complexes that are formed during transmission of extracellular information to the nucleus. Traditionally, signaling complexes have been largely perceived (albeit often implicitly) as machine-like structures. However, the number of molecular complexes that could theoretically be formed by complex signaling networks is astronomically large. This has led to the pleiomorphic ensemble hypothesis, which posits that diverse and rapidly changing sets of transient protein complexes can transmit and process information. Our goal was to use computational approaches, specifically rule-based modeling, to test these hypotheses. We constructed a model of the prototypical yeast mating pathway and found significant ensemble-like behavior. Our results thus demonstrated that ensembles can in fact transmit extracellular signals with minimal noise. Additionally, a comparison of this model with one tailored to generate machine-like complexes displayed notable phenotypic differences, revealing potential advantages for ensemble-like signaling. Our demonstration that ensembles can function effectively will have a significant impact on how we conceptualize signaling and other processes inside cells.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003278 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03278&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003278
DOI: 10.1371/journal.pcbi.1003278
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().