EconPapers    
Economics at your fingertips  
 

Prediction of Drug-Target Interactions for Drug Repositioning Only Based on Genomic Expression Similarity

Kejian Wang, Jiazhi Sun, Shufeng Zhou, Chunling Wan, Shengying Qin, Can Li, Lin He and Lun Yang

PLOS Computational Biology, 2013, vol. 9, issue 11, 1-9

Abstract: Small drug molecules usually bind to multiple protein targets or even unintended off-targets. Such drug promiscuity has often led to unwanted or unexplained drug reactions, resulting in side effects or drug repositioning opportunities. So it is always an important issue in pharmacology to identify potential drug-target interactions (DTI). However, DTI discovery by experiment remains a challenging task, due to high expense of time and resources. Many computational methods are therefore developed to predict DTI with high throughput biological and clinical data. Here, we initiatively demonstrate that the on-target and off-target effects could be characterized by drug-induced in vitro genomic expression changes, e.g. the data in Connectivity Map (CMap). Thus, unknown ligands of a certain target can be found from the compounds showing high gene-expression similarity to the known ligands. Then to clarify the detailed practice of CMap based DTI prediction, we objectively evaluate how well each target is characterized by CMap. The results suggest that (1) some targets are better characterized than others, so the prediction models specific to these well characterized targets would be more accurate and reliable; (2) in some cases, a family of ligands for the same target tend to interact with common off-targets, which may help increase the efficiency of DTI discovery and explain the mechanisms of complicated drug actions. In the present study, CMap expression similarity is proposed as a novel indicator of drug-target interactions. The detailed strategies of improving data quality by decreasing the batch effect and building prediction models are also effectively established. We believe the success in CMap can be further translated into other public and commercial data of genomic expression, thus increasing research productivity towards valid drug repositioning and minimal side effects.Author Summary: Small drug molecules usually bind to unintended off-targets, leading to unexpected drug responses such as side effects or drug repositioning opportunities. Thus, identifying unintended drug-target interactions (DTI) is particularly required for understanding complicated drug actions. It remains expensive nowadays to experimentally determine DTI, so various computational methods are developed. In this study, we initiatively demonstrated that target binding is directly correlated with drug induced genomic expression profiles in Connectivity Map (CMap). By improving data quality of CMap, we illustrated three important facts: (1) Drugs binding to common targets show higher gene-expression similarity than random compounds, indicating that upstream ligand binding could be characterized by downstream gene-expression change. (2) It is found that some targets are better characterized by CMap than others. To guarantee efficiency of DTI discovery, prediction models should be specifically built for those well characterized targets. (3) It is broadly observed in the predicted DTI that ligands for the same target may collectively interact with common off-target. This observation is consistent with published experimental evidence and can help illustrate the mechanisms of unexplained drug reactions. Based on CMap, our work established an efficient pipeline of identifying potential DTI. By extending the success in CMap to other genomic data sources, we believe more DTI would be discovered.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003315 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03315&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003315

DOI: 10.1371/journal.pcbi.1003315

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1003315