Interference and Shaping in Sensorimotor Adaptations with Rewards
Ran Darshan,
Arthur Leblois and
David Hansel
PLOS Computational Biology, 2014, vol. 10, issue 1, 1-20
Abstract:
When a perturbation is applied in a sensorimotor transformation task, subjects can adapt and maintain performance by either relying on sensory feedback, or, in the absence of such feedback, on information provided by rewards. For example, in a classical rotation task where movement endpoints must be rotated to reach a fixed target, human subjects can successfully adapt their reaching movements solely on the basis of binary rewards, although this proves much more difficult than with visual feedback. Here, we investigate such a reward-driven sensorimotor adaptation process in a minimal computational model of the task. The key assumption of the model is that synaptic plasticity is gated by the reward. We study how the learning dynamics depend on the target size, the movement variability, the rotation angle and the number of targets. We show that when the movement is perturbed for multiple targets, the adaptation process for the different targets can interfere destructively or constructively depending on the similarities between the sensory stimuli (the targets) and the overlap in their neuronal representations. Destructive interferences can result in a drastic slowdown of the adaptation. As a result of interference, the time to adapt varies non-linearly with the number of targets. Our analysis shows that these interferences are weaker if the reward varies smoothly with the subject's performance instead of being binary. We demonstrate how shaping the reward or shaping the task can accelerate the adaptation dramatically by reducing the destructive interferences. We argue that experimentally investigating the dynamics of reward-driven sensorimotor adaptation for more than one sensory stimulus can shed light on the underlying learning rules.Author Summary: The brain has a robust ability to adapt to external perturbations imposed on acquired sensorimotor transformations. Here, we used a mathematical model to investigate the reward-based component in sensorimotor adaptations. We show that the shape of the delivered reward signal, which in experiments is usually binary to indicate success or failure, affects the adaptation dynamics. We demonstrate how the ability to adapt to perturbations by relying solely on binary rewards depends on motor variability, size of perturbation and the threshold for delivering the reward. When adapting motor responses to multiple sensory stimuli simultaneously, on-line interferences between the motor performance in response to the different stimuli occur as a result of the overlap in the neural representation of the sensory stimuli, as well as the physical distance between them. Adaptation may be extremely slow when perturbations are induced to a few stimuli that are physically different from each other because of destructive interferences. When intermediate stimuli are introduced, the physical distance between neighbor stimuli is reduced, and constructive interferences can emerge, resulting in faster adaptation. Remarkably, adaptation to a widespread sensorimotor perturbation is accelerated by increasing the number of sensory stimuli during training, i.e. learning is faster if one learns more.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003377 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03377&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003377
DOI: 10.1371/journal.pcbi.1003377
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().