EconPapers    
Economics at your fingertips  
 

Optimal Screening Strategies for Healthcare Associated Infections in a Multi-Institutional Setting

Aaron C Miller, Linnea A Polgreen and Philip M Polgreen

PLOS Computational Biology, 2014, vol. 10, issue 1, 1-11

Abstract: Health institutions may choose to screen newly admitted patients for the presence of disease in order to reduce disease prevalence within the institution. Screening is costly, and institutions must judiciously choose which patients they wish to screen based on the dynamics of disease transmission. Since potentially infected patients move between different health institutions, the screening and treatment decisions of one institution will affect the optimal decisions of others; an institution might choose to “free-ride” off the screening and treatment decisions of neighboring institutions. We develop a theoretical model of the strategic decision problem facing a health care institution choosing to screen newly admitted patients. The model incorporates an SIS compartmental model of disease transmission into a game theoretic model of strategic decision-making. Using this setup, we are able to analyze how optimal screening is influenced by disease parameters, such as the efficacy of treatment, the disease recovery rate and the movement of patients. We find that the optimal screening level is lower for diseases that have more effective treatments. Our model also allows us to analyze how the optimal screening level varies with the number of decision makers involved in the screening process. We show that when institutions are more autonomous in selecting whom to screen, they will choose to screen at a lower rate than when screening decisions are more centralized. Results also suggest that centralized screening decisions have a greater impact on disease prevalence when the availability or efficacy of treatment is low. Our model provides insight into the factors one should consider when choosing whether to set a mandated screening policy. We find that screening mandates set at a centralized level (i.e. state or national) will have a greater impact on the control of infectious disease.Author Summary: Healthcare associated infections are a major cause of morbidity and mortality. Screening patients on admission to the hospital may reduce prevalence by identifying infected individuals; infected individuals can then be treated or isolated to prevent further spread. Because screening is costly, institutions must weigh the benefits of reduced prevalence against the costs of screening. However, patients move between institutions carrying disease with them; consequently, when choosing who to screen, institutions must also consider the rates at which neighboring institutions screen patients as well. We develop a theoretical model that describes this strategic decision process. Using this model we are able to analyze the screening decision problem along three dimensions: (1) how disease specific parameters, such as the effectiveness of treatment, influence the optimal screening level, (2) how the degree of centralization in screening policy (e.g. local, state or federal) influences the optimal screening level, and (3) how these two sets of factors combine to influence the optimal screening level. Our model highlights factors to consider when choosing to implement screening policy, and results are of use to policy makers wishing to reduce the prevalence of infectious disease.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003407 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03407&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003407

DOI: 10.1371/journal.pcbi.1003407

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1003407