A Network Characteristic That Correlates Environmental and Genetic Robustness
Zeina Shreif and
Vipul Periwal
PLOS Computational Biology, 2014, vol. 10, issue 2, 1-23
Abstract:
As scientific advances in perturbing biological systems and technological advances in data acquisition allow the large-scale quantitative analysis of biological function, the robustness of organisms to both transient environmental stresses and inter-generational genetic changes is a fundamental impediment to the identifiability of mathematical models of these functions. An approach to overcoming this impediment is to reduce the space of possible models to take into account both types of robustness. However, the relationship between the two is still controversial. This work uncovers a network characteristic, transient responsiveness, for a specific function that correlates environmental imperturbability and genetic robustness. We test this characteristic extensively for dynamic networks of ordinary differential equations ranging up to 30 interacting nodes and find that there is a power-law relating environmental imperturbability and genetic robustness that tends to linearity as the number of nodes increases. Using our methods, we refine the classification of known 3-node motifs in terms of their environmental and genetic robustness. We demonstrate our approach by applying it to the chemotaxis signaling network. In particular, we investigate plausible models for the role of CheV protein in biochemical adaptation via a phosphorylation pathway, testing modifications that could improve the robustness of the system to environmental and/or genetic perturbation.Author Summary: Advances in the ways that living systems can be perturbed in order to study how they function and sharp reductions in the cost of computer resources have allowed the collection of large amounts of data. The aim of biological system modeling is to analyze this data in order to pin down the precise interactions of molecules that underlie the observed functions. This is made difficult due to two features of biological systems: (1) Living things do not show an appreciable loss of function across large ranges of environmental factors. (2) Their function is inherited from parent to child more or less unchanged in spite of random mutations in genetic sequences. We find that these two features are more correlated in a specific subset of networks and show how to use this observation to find networks in which these two features appear together. Working within this smaller space of networks may make it easier to find suitable underlying models from data.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003474 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03474&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003474
DOI: 10.1371/journal.pcbi.1003474
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().