Modeling Mutual Exclusivity of Cancer Mutations
Ewa Szczurek and
Niko Beerenwinkel
PLOS Computational Biology, 2014, vol. 10, issue 3, 1-12
Abstract:
In large collections of tumor samples, it has been observed that sets of genes that are commonly involved in the same cancer pathways tend not to occur mutated together in the same patient. Such gene sets form mutually exclusive patterns of gene alterations in cancer genomic data. Computational approaches that detect mutually exclusive gene sets, rank and test candidate alteration patterns by rewarding the number of samples the pattern covers and by punishing its impurity, i.e., additional alterations that violate strict mutual exclusivity. However, the extant approaches do not account for possible observation errors. In practice, false negatives and especially false positives can severely bias evaluation and ranking of alteration patterns. To address these limitations, we develop a fully probabilistic, generative model of mutual exclusivity, explicitly taking coverage, impurity, as well as error rates into account, and devise efficient algorithms for parameter estimation and pattern ranking. Based on this model, we derive a statistical test of mutual exclusivity by comparing its likelihood to the null model that assumes independent gene alterations. Using extensive simulations, the new test is shown to be more powerful than a permutation test applied previously. When applied to detect mutual exclusivity patterns in glioblastoma and in pan-cancer data from twelve tumor types, we identify several significant patterns that are biologically relevant, most of which would not be detected by previous approaches. Our statistical modeling framework of mutual exclusivity provides increased flexibility and power to detect cancer pathways from genomic alteration data in the presence of noise. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2–5.Author Summary: Tumor DNA carries multiple alterations, including somatic point mutations, amplifications, and deletions. It is challenging to identify the disease-causing alterations from the plethora of random ones, and to delineate their functional relations and involvement in common pathways. One solution for this task is inspired by the observation that genes from the same cancer pathway tend not to be altered together in each patient, and thus form patterns of mutually exclusive alterations across patients. Mutual exclusivity may arise, because alteration of only one pathway component is sufficient to deregulate the entire process. Detecting such patterns is an important step in de novo identification of cancerous pathways and potential treatment targets. However, the task is complicated by errors in the data, due to measurement noise, false mutation calls and their misinterpretation. Here, we propose a fully probabilistic, generative model of mutually exclusive patterns accounting for observation errors, with interpretable parameters that allow proper evaluation of patterns, free of error bias. Within our statistical framework, we develop efficient algorithms for parameter estimation and pattern ranking, together with a statistical test for mutual exclusivity, providing more flexibility and power than procedures applied previously.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003503 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03503&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003503
DOI: 10.1371/journal.pcbi.1003503
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().