EconPapers    
Economics at your fingertips  
 

Quantitative Protein Localization Signatures Reveal an Association between Spatial and Functional Divergences of Proteins

Lit-Hsin Loo, Danai Laksameethanasan and Yi-Ling Tung

PLOS Computational Biology, 2014, vol. 10, issue 3, 1-17

Abstract: Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein functions and how these functions were acquired in cells from different organisms or species. A public web interface of PLAST is available at http://plast.bii.a-star.edu.sg.Author Summary: Proteins are fundamental building blocks of cells. They perform a variety of biological functions, many of which are essential to the vitality and normal functioning of cells. Proteins have to be located at the appropriate regions inside a cell to perform their functions. Therefore, when proteins change their locations, they may acquire new or different functions. However, the relationships between the locations and functions of proteins are difficult to analyze because protein locations are often represented in distinct and manually-defined categories of subcellular regions. Many proteins have complex or subtle differences in their localization patterns that can be hardly represented by these categories. Here, we present an automated analysis tool for generating quantitative signatures of protein localization patterns without requiring manual or automated assignments of proteins into distinct categories. We show that our tool can identify proteins located at the same subcellular regions more accurately than existing categorization-based methods. Our tool allows comprehensive and more accurate studies of the relationships between protein localizations and functions. By knowing where proteins are located and how their locations were changed, we may discover their functions and better understand how they acquire these functions.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003504 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03504&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003504

DOI: 10.1371/journal.pcbi.1003504

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1003504