EconPapers    
Economics at your fingertips  
 

From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0

Masafumi Oizumi, Larissa Albantakis and Giulio Tononi

PLOS Computational Biology, 2014, vol. 10, issue 5, 1-25

Abstract: This paper presents Integrated Information Theory (IIT) of consciousness 3.0, which incorporates several advances over previous formulations. IIT starts from phenomenological axioms: information says that each experience is specific – it is what it is by how it differs from alternative experiences; integration says that it is unified – irreducible to non-interdependent components; exclusion says that it has unique borders and a particular spatio-temporal grain. These axioms are formalized into postulates that prescribe how physical mechanisms, such as neurons or logic gates, must be configured to generate experience (phenomenology). The postulates are used to define intrinsic information as “differences that make a difference” within a system, and integrated information as information specified by a whole that cannot be reduced to that specified by its parts. By applying the postulates both at the level of individual mechanisms and at the level of systems of mechanisms, IIT arrives at an identity: an experience is a maximally irreducible conceptual structure (MICS, a constellation of concepts in qualia space), and the set of elements that generates it constitutes a complex. According to IIT, a MICS specifies the quality of an experience and integrated information ΦMax its quantity. From the theory follow several results, including: a system of mechanisms may condense into a major complex and non-overlapping minor complexes; the concepts that specify the quality of an experience are always about the complex itself and relate only indirectly to the external environment; anatomical connectivity influences complexes and associated MICS; a complex can generate a MICS even if its elements are inactive; simple systems can be minimally conscious; complicated systems can be unconscious; there can be true “zombies” – unconscious feed-forward systems that are functionally equivalent to conscious complexes.Author Summary: Integrated information theory (IIT) approaches the relationship between consciousness and its physical substrate by first identifying the fundamental properties of experience itself: existence, composition, information, integration, and exclusion. IIT then postulates that the physical substrate of consciousness must satisfy these very properties. We develop a detailed mathematical framework in which composition, information, integration, and exclusion are defined precisely and made operational. This allows us to establish to what extent simple systems of mechanisms, such as logic gates or neuron-like elements, can form complexes that can account for the fundamental properties of consciousness. Based on this principled approach, we show that IIT can explain many known facts about consciousness and the brain, leads to specific predictions, and allows us to infer, at least in principle, both the quantity and quality of consciousness for systems whose causal structure is known. For example, we show that some simple systems can be minimally conscious, some complicated systems can be unconscious, and two different systems can be functionally equivalent, yet one is conscious and the other one is not.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003588 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03588&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003588

DOI: 10.1371/journal.pcbi.1003588

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1003588